Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Oncol ; 62(4): 391-399, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37203198

ABSTRACT

INTRODUCTION: Proton radiation therapy (PT) has become a treatment option alongside photon therapy (XRT) for lower-grade gliomas (LGG). In this single-institution retrospective study, we investigate the patient characteristics and treatment outcomes, including pseudo-progression (PsP), for LGG patients selected for PT. METHOD: Adult patients with grade 2-3 glioma consecutively treated with radiotherapy (RT) from May 2012 to December 2019 were retrospectively included in this cohort study. Tumor characteristics and treatment data were collected. The groups treated with PT and XRT were compared regarding treatment characteristics, side effects, occurrence of PsP, and survival outcomes. PsP was defined as new or growing lesions followed by either decrease or stabilization during a 12 month-period with no treatment. RESULTS: Out of 143 patients meeting the inclusion criteria, 44 were treated with PT, 98 with XRT and one with mixed PT + XRT. The patients receiving PT were younger, had a lower tumor grade, more oligodendrogliomas and received a lower mean brain and brainstem dose. PsP was observed in 21 out of 126 patients, with no difference between XRT and PT (p = .38). The rate of fatigue in immediate connection to RT (zero to three months after) was higher for XRT than for PT (p = .016). The PT patients had a significantly better PFS and OS than the XRT patients (p = .025 and .035), but in multivariate analysis radiation modality was non-significant. Higher average dose to both brain and brainstem was associated with inferior PFS and OS (p < .001). Median follow-up time were 69 months and 26 months for XRT and PT patients, respectively. CONCLUSION: Contrary to previous studies, there was no difference in risk of PsP for XRT and PT. PT was associated with lower rates of fatigue <3 months after RT. The superior survival outcomes for PT indicates that the patients with the best prognosis were referred to PT.


Subject(s)
Brain Neoplasms , Glioma , Proton Therapy , Adult , Humans , Proton Therapy/adverse effects , Brain Neoplasms/pathology , Retrospective Studies , Cohort Studies , Glioma/radiotherapy , Glioma/pathology
2.
Sci Rep ; 12(1): 19018, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36347904

ABSTRACT

Schlieren photography is widely used for visualizing phenomena within transparent media. The technique, which comes in a variety of configurations, is based on detecting or extracting the degree to which light is deflected whilst propagating through a sample. To date, high-speed schlieren videography can only be achieved using high-speed cameras, thus limiting the frame rate of such configurations to the capabilities of the camera. Here we demonstrate, for the first time, optically multiplexed schlieren videography, a concept that allows such hardware limitations to be bypassed, opening up for, in principle, an unlimited frame rate. By illuminating the sample with a rapid burst of uniquely spatially modulated light pulses, a temporally resolved sequence can be captured in a single photograph. The refractive index variations are thereafter measured by quantifying the local phase shift of the superimposed intensity modulations. The presented results demonstrate the ability to acquire a series of images of flame structures at frame rates up to 1 Mfps using a standard 50 fps sCMOS camera.

3.
Sci Rep ; 11(1): 20454, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650144

ABSTRACT

Fluorescence-based multispectral imaging of rapidly moving or dynamic samples requires both fast two-dimensional data acquisition as well as sufficient spectral sensitivity for species separation. As the number of fluorophores in the experiment increases, meeting both these requirements becomes technically challenging. Although several solutions for fast imaging of multiple fluorophores exist, they all have one main restriction; they rely solely on spectrally resolving either the excitation- or the emission characteristics of the fluorophores. This inability directly limits how many fluorophores existing methods can simultaneously distinguish. Here we present a snapshot multispectral imaging approach that not only senses the excitation and emission characteristics of the probed fluorophores but also all cross term combinations of excitation and emission. To the best of the authors' knowledge, this is the only snapshot multispectral imaging method that has this ability, allowing us to even sense and differentiate between light of equal wavelengths emitted from the same fluorescing species but where the signal components stem from different excitation sources. The current implementation of the technique allows us to simultaneously gather 24 different spectral images on a single detector, from which we demonstrate the ability to visualize and distinguish up to nine fluorophores within the visible wavelength range.

4.
Sci Rep ; 10(1): 18920, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144627

ABSTRACT

Frequency recognition algorithm for multiple exposures (FRAME) is a single-exposure imaging technique that can be used for ultrafast videography, achieved through rapid illumination with spatially modulated laser pulses. To date, both the limit in sequence length as well as the relation between sequence length and image quality are unknown for FRAME imaging. Investigating these questions requires a flexible optical arrangement that has the capability of reaching significantly longer image sequences than currently available solutions. In this paper we present a new type of FRAME setup that fulfills this criteria. The setup relies only on (i) a diffractive optical element, (ii) an imaging lens and (iii) a digital micromirror device to generate a modulated pulse train with sequence lengths ranging from 2 to 1024 image frames. To the best of the authors' knowledge, this is the highest number of temporally resolved frames imaged in a single-exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...