Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e17748, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449104

ABSTRACT

Hole transport material-free carbon-based perovskite solar cells (HTM-free C-PSCs) are recognized as a cost-effective and stable alternative to conventional perovskite solar cells. However, the significant energy level misalignment between the perovskite layer and the carbon counter electrode (CE) results in ineffective hole extraction and unfavorable charge recombination, which decreases the power conversion efficiency (PCE). Here, we report the introduction of metal salts (Al, Ca, and Mg) into graphite/carbon black (Gr/CB) CEs to modify the work function and enhance the hole selectivity of the CE. This modification leads to improved energy level alignment, efficient hole extraction, and reduced charge recombination. The PCE of the HTM-free C-PSC based on Al-modified Gr/CB as the CE material reached 9.91%, which is approximately 12% higher than that of devices employing unmodified Gr/CB CEs. This work demonstrates that by directly incorporating metal salts into the Gr/CB CE, the energy level alignment and hole extraction at the perovskite/carbon interface can be improved. This presents a viable method for enhancing the PCE of HTM-free C-PSCs.

2.
ACS Omega ; 7(26): 22830-22838, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811920

ABSTRACT

The interfacial compatibility between the graphite/carbon black composite counter electrode (Gr/CB CE) and the perovskite layer is a crucial determinant of the performance of the hole-transport-layer-free carbon-based perovskite solar cells, and judicious selection of the Gr/CB CE application method is essential for achieving an optimum contact. In this work, three different types of Gr/CB CEs application methods are investigated: (1) deposition of Gr/CB on the fluorine-doped tin oxide (FTO) substrate, followed by clamping to the perovskite layer, (2) direct deposition of Gr/CB onto the perovskite layer, and (3) deposition of Gr/CB onto the PbI2 precursor layer, followed by immersion in methylammonium iodide solution for the in situ conversion of PbI2 to perovskite. The results revealed that Method 3 produced superior Gr/CB-perovskite contacts, resulting in up to 8.81% power conversion efficiency. The devices prepared using Method 3 also exhibited the best stability in the air, retaining 71.1% of their original efficiency after 1600 h of continuous testing. These results demonstrate that Gr/CB CEs can be considered excellent alternatives to the costly noble metals often employed in perovskite solar cells (PSCs) when deposited using a suitable technique.

3.
Data Brief ; 39: 107487, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34746341

ABSTRACT

In this article, we present the data collected from the fabricated carbon black-graphite counter electrode for dye-sensitized solar cells (DSSC) by incorporating binders such as titanium (IV) isopropoxide (TTIP), and zirconium (IV) dioxide (ZrO2). The addition of binders to the carbon black-graphite composite (CB/Gr) can drastically improve the adherence between the counter electrodes and the fluorine-doped tin oxide (FTO) substrate, surface area and the interparticle connection between the carbon materials. These data are presented which comprise of the resistivity measurements, scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), and near-edge X-ray absorption fine structure (NEXAFS). The collection of this data was performed at room temperature. Detailed analysis of the data can be found in [1].

4.
Angew Chem Int Ed Engl ; 58(28): 9389-9393, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31033135

ABSTRACT

A high-purity methylammonium lead iodide complex with intercalated dimethylformamide (DMF) molecules, CH3 NH3 PbI3 ⋅DMF, is introduced as an effective precursor material for fabricating high-quality solution-processed perovskite layers. Spin-coated films of the solvent-intercalated complex dissolved in pure dimethyl sulfoxide (DMSO) yielded thick, dense perovskite layers after thermal annealing. The low volatility of the pure DMSO solvent extended the allowable time for low-speed spin programs and considerably relaxed the precision needed for the antisolvent addition step. An optimized, reliable fabrication method was devised to take advantage of this extended process window and resulted in highly consistent performance of perovskite solar cell devices, with up to 19.8 % power-conversion efficiency (PCE). The optimized method was also used to fabricate a 22.0 cm2 , eight-cell module with 14.2 % PCE (active area) and 8.64 V output (1.08 V/cell).

6.
J Biophys ; 2015: 510467, 2015.
Article in English | MEDLINE | ID: mdl-25688266

ABSTRACT

Chlorophyll and xanthophyll dyes extracted from a single source of filamentous freshwater green algae (Cladophora sp.) were used to sensitize dye sensitized solar cells and their performances were investigated. A more positive interaction is expected as the derived dyes come from a single natural source because they work mutually in nature. Cell sensitized with mixed chlorophyll and xanthophyll showed synergistic activity with improved cell performance of 1.5- to 2-fold higher than that sensitized with any individual dye. The effect of temperature and the stability of these dyes were also investigated. Xanthophyll dye was found to be more stable compared to chlorophyll that is attributed in the ability of xanthophyll to dissipate extra energy via reversible structural changes. Mixing the dyes resulted to an increase in effective electron life time and reduced the process of electron recombination during solar cell operation, hence exhibiting a synergistic effect.

7.
J Biophys ; 2015: 582091, 2015.
Article in English | MEDLINE | ID: mdl-26793239

ABSTRACT

The use of anthocyanin dyes extracted from epidermal leaves of Tradescantia spathacea (Trant) and petals of Ixora coccinea (IX) was evaluated in the application of dye-sensitized solar cells (DSSCs). Subsequently, cocktail anthocyanin dyes from these dyes were prepared and how they enhanced the cell's overall performance was assessed using five different volume-to-volume ratios. Cocktail dyes absorbed a wider range of light in the visible region, thus increasing the cell efficiencies of the cocktail dyes when compared to the DSSC sensitized by individual dyes. The surface charge (zeta-potential), average size of aggregated anthocyanin molecules (zetasizer), and anthocyanin stability in different storage temperatures were analyzed and recorded. Lower size of aggregated dye molecules as revealed from the cocktail dyes ensured better adsorption onto the TiO2 film. Tradescantia/Ixora pigments mixed in 1 : 4 ratio showed the highest cell efficiency of η = 0.80%, under the irradiance of 100 mW cm(-2), with a short-circuit current density 4.185 mA/cm(2), open-circuit voltage of 0.346 V, and fill factor of 0.499. It was found that the desired storage temperature for these cocktail dyes to be stable over time was -20°C, in which the anthocyanin half-life was about approximately 1727 days.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 138: 596-602, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25541396

ABSTRACT

Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids.


Subject(s)
Coloring Agents/chemistry , Fruit/chemistry , Sapindaceae/chemistry , Solar Energy , Anthocyanins/chemistry , Electricity , Electrochemical Techniques , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
9.
J Biophys ; 2014: 739514, 2014.
Article in English | MEDLINE | ID: mdl-24707286

ABSTRACT

Natural dyes have become a viable alternative to expensive organic sensitizers because of their low cost of production, abundance in supply, and eco-friendliness. We evaluated 35 native plants containing anthocyanin pigments as potential sensitizers for DSSCs. Melastoma malabathricum (fruit pulp), Hibiscus rosa-sinensis (flower), and Codiaeum variegatum (leaves) showed the highest absorption peaks. Hence, these were used to determine anthocyanin content and stability based on the impacts of storage temperature. Melastoma malabathricum fruit pulp exhibited the highest anthocyanin content (8.43 mg/L) followed by H. rosa-sinensis and C. variegatum. Significantly greater stability of extracted anthocyanin pigment was shown when all three were stored at 4°C. The highest half-life periods for anthocyanin in M. malabathricum, H. rosa-sinensis, and C. variegatum were 541, 571, and 353 days at 4°C. These were rapidly decreased to 111, 220, and 254 days when stored at 25°C. The photovoltaic efficiency of M. malabathricum was1.16%, while the values for H. rosa-sinensis and C. variegatum were 0.16% and 1.08%, respectively. Hence, M. malabathricum fruit pulp extracts can be further evaluated as an alternative natural sensitizer for DSSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...