Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 238(11): 2497-2506, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32860117

ABSTRACT

Paired associative stimulation (PAS) can induce plasticity in the motor cortex, as measured by changes in corticospinal excitability (CSE). This effect is attenuated in older and less active individuals. Although a single bout of exercise enhances PAS-induced plasticity in young, physically inactive adults, it is not yet known if physical activity interventions affect PAS-induced neuroplasticity in middle-aged inactive individuals. Sixteen inactive middle-aged office workers participated in a randomized cross-over design investigating how CSE and short-interval intracortical inhibition (SICI) were affected by PAS preceded by 3 h of sitting (SIT), 3 h of sitting interrupted every 30 min by 3 min of frequent short bouts of physical activity (FPA) and 2.5 h of sitting followed by 25 min of moderate-intensity exercise (EXE). Transcranial magnetic stimulation was applied over the primary motor cortex (M1) of the dominant abductor pollicis brevis to induce recruitment curves before and 5 min and 30 min post-PAS. Linear mixed models were used to compare changes in CSE using time and condition as fixed effects and subjects as random effects. There was a main effect of time on CSE and planned within-condition comparisons showed that CSE was significantly increased from baseline to 5 min and 30 min post-PAS, in the FPA condition, with no significant changes in the SIT or EXE conditions. SICI decreased from baseline to 5 min post-PAS, but this was not related to changes in CSE. Our findings suggest that in middle-aged inactive adults, FPAs may promote corticospinal neuroplasticity. Possible mechanisms are discussed.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Neuronal Plasticity , Adult , Aged , Electric Stimulation , Humans , Middle Aged , Transcranial Magnetic Stimulation
2.
Eur J Appl Physiol ; 116(9): 1807-17, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27448605

ABSTRACT

PURPOSE: The aim of this study was to describe thigh muscle activation during cycling using intramuscular electromyographic recordings of eight thigh muscles, including the biceps femoris short head (BFS) and the vastus intermedius (Vint). METHODS: Nine experienced cyclists performed an incremental test (start at 170 W and increased by 20 W every 2 min) on a bicycle ergometer either for a maximum of 20 min or to fatigue. Intramuscular electromyography (EMG) of eight muscles and kinematic data of the right lower limb were recorded during the last 20 s in the second workload (190 W). EMG data were normalized to the peak activity occurring during this workload. Statistical significance was assumed at p ≤ 0.05. RESULTS: The vastii showed a greater activation during the 1st quadrant compared to other quadrants. The rectus femoris (RF) showed a similar activation, but with two bursts in the 1st and 4th quadrants in three subjects. This behavior may be explained by the bi-articular function during the cycling movement. Both the BFS and Vint were activated longer than, but in synergy with their respective agonistic superficial muscles. CONCLUSION: Intramuscular EMG was used to verify muscle activation during cycling. The activation pattern of deep muscles (Vint and BFS) could, therefore, be described and compared to that of the more superficial muscles. The complex coordination of quadriceps and hamstring muscles during cycling was described in detail.


Subject(s)
Bicycling/physiology , Electromyography/methods , Hamstring Muscles/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology , Adult , Female , Humans , Knee Joint/physiology , Male , Reproducibility of Results , Sensitivity and Specificity
3.
PLoS One ; 10(11): e0141777, 2015.
Article in English | MEDLINE | ID: mdl-26562017

ABSTRACT

The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.


Subject(s)
Arm/physiology , Movement/physiology , Muscle Contraction/physiology , Range of Motion, Articular/physiology , Shoulder/physiology , Abdominal Muscles/physiology , Adult , Biomechanical Phenomena , Electromyography , Humans , Male , Posture/physiology , Rectus Abdominis/physiology , Torque , Torso/physiology , Young Adult
4.
Scand J Med Sci Sports ; 24(5): 758-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23489349

ABSTRACT

The purpose of the present study was to investigate the pattern of trunk muscle activation and intra-abdominal pressure (IAP) in a somewhat modified version of the clean and jerk lift. Nine healthy physically active male amateurs performed the exercise with a 30-kg barbell. Muscle activity was registered with electromyography from transversus abdominis (TrA) and obliquus internus (OI) using intramuscular electrodes and from rectus abdominis (RA) and erector spinae (ES) with surface electrodes. IAP was recorded with a nasogastric catheter. Measurements were made in various static positions throughout the lift and in the transitional phases separating them, both during lifting and lowering. The results demonstrated that the innermost abdominal muscle, TrA, showed increased activation levels in the two highest positions, whereas ES was most active, together with the highest IAP, in the lowest position. OI and RA showed generally little activation and no obvious trend throughout the lift. The results strengthen the view of a contributing role of TrA to the upright control of the trunk and indicate that the clean and jerk lift might constitute a whole-body exercise, still targeting the TrA muscle, in late-stage rehabilitation, especially for athletes during return to sports.


Subject(s)
Back Muscles/physiology , Muscle Contraction , Rectus Abdominis/physiology , Torso/physiology , Weight Lifting/physiology , Abdomen/physiology , Adult , Biomechanical Phenomena , Electromyography , Humans , Male , Posture/physiology , Pressure , Young Adult
5.
Eur J Appl Physiol ; 112(5): 1899-905, 2012 May.
Article in English | MEDLINE | ID: mdl-21922262

ABSTRACT

The purpose of this study was to investigate the acute effects of electromyographic (EMG) feedback on muscle activation and strength during maximal voluntary concentric and eccentric muscle actions. 15 females performed two sets of three lengthening and three shortening maximal voluntary isokinetic knee extensions at 20° s(-1) over 60° range of motion. After the first set, subjects were randomized to either a control group (n = 8) or a feedback group (n = 7). In the second set, the control group performed tasks identical to those in the first set, whereas the feedback group additionally received concurrent visual feedback of the EMGrms from Vastus Medialis (VM). Knee extensor strength and EMG activation of VM, Vastus lateralis (VL) and hamstrings (HAM) were measured during the MVCs. Analyses were performed separately in a 1 s preactivation phase, a 1 s initial movement phase and a 1 s late movement phase. EMG feedback was associated with significantly higher knee extensor strength in all phases (20.5% p < 0.05, 18.2% p < 0.001 and 19% p < 0.001, respectively) for the eccentric MVCs and in the preactivation phase (16.3%, p < 0.001) and initial movement phases (7.2%, p < 0.05) for concentric MVCs. EMG feedback from VM further improved activation in VM and HAM but not VL. These findings suggested that concurrent visual EMG feedback from VM could acutely enhance muscle strength and activation. Before recommending implementation of EMG feedback in resistance training paradigms, the feedback parameters needs to be optimized and its long-term effects needs to be scrutinized.


Subject(s)
Biofeedback, Psychology , Electromyography/methods , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Adult , Exercise Test , Female , Humans , Range of Motion, Articular , Young Adult
6.
Gait Posture ; 33(3): 473-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21269831

ABSTRACT

Transversus abdominis (TrA) is a multifunctional muscle, being involved in pressure regulation within the abdominal cavity and thereby in direction independent stabilization of the spine and resistance to imposed trunk flexion moments. Indirect evidence suggests a role of TrA also in postural control of the erect human trunk. The main purpose here was to investigate if the magnitude of TrA activation is related to postural demand. Eleven healthy males performed seven different symmetrical static bilateral arm positions holding 3 kg in each hand. The arm positions were selected to systematically vary the height of the centre of mass (COM) keeping imposed moments constant and vice versa. EMG was recorded bilaterally with fine-wire intramuscular electrodes from TrA and obliquus internus (OI) and with surface electrodes from rectus abdominis (RA) and erector spinae (ES). Intra-abdominal pressure (IAP) was measured via a pressure transducer in the gastric ventricle. TrA was the only muscle that displayed activation co-varying with the vertical position of the COM. Further, TrA activation increased, together with IAP and ES activation, with imposed flexion moment, i.e. with arms extended horizontally forward. In contrast to OI, RA and ES, TrA activation was independent of the direction of the imposed moment (arms held inclined forward or backward). In conclusion, TrA activation level is uniquely associated with increased postural demand caused by elevated COM. Also, TrA appears to assist in counteracting trunk flexion via increased IAP, and contribute to general spine stabilization when the trunk is exposed to moderate flexion and extension moments.


Subject(s)
Abdominal Muscles/physiology , Electromyography , Postural Balance/physiology , Posture/physiology , Adult , Analysis of Variance , Humans , Male , Rectus Abdominis/physiology , Reference Values , Sensitivity and Specificity , Weight-Bearing/physiology , Young Adult
7.
J Appl Physiol (1985) ; 109(1): 19-26, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20448031

ABSTRACT

The aim of this study was to investigate if, and via what mechanisms, resistance training of the plantar flexor muscles affects voluntary activation during maximal voluntary eccentric and concentric muscle actions. Twenty healthy subjects were randomized into a resistance training group (n = 9) or a passive control group (n = 11). Training consisted of 15 sessions of unilateral mainly eccentric plantar flexor exercise over a 5-wk period. During pre- and posttraining testing, dynamic plantar flexor strength was measured and voluntary activation was calculated using the twitch interpolation technique. The soleus Hoffman reflex (H-reflex) was used to assess motoneurone excitability and presynaptic inhibition of Ia afferents, whereas the soleus V-wave was used to test for changes in both presynaptic inhibition of Ia afferents and supraspinal inputs to the motoneurone pool. H-reflexes, V-waves, supramaximal M-waves, and twitches were evoked as the foot was moved at 5 degrees /s through an angle of 90 degrees during passive ankle rotations (passive H-reflexes and M-waves) and during maximal voluntary concentric and eccentric plantar flexions [maximal voluntary contraction (MVC) H-reflexes, M-waves, and V-waves]. Training induced significant improvements in plantar flexor strength and voluntary activation during both concentric and eccentric maximal voluntary actions. Soleus passive and MVC H-to-M ratios remained unchanged after training, whereas the soleus V-to-M ratio was increased during both concentric and eccentric contractions after training. No changes were found in the control group for any of the parameters. The enhanced voluntary strength could be attributed partly to an increase in voluntary activation induced by eccentric training. Since the passive and MVC H-to-M ratios remained unchanged, the increase in activation is probably not due to decreased presynaptic inhibition. The increased V-to-M ratio for both action types indicates that increased voluntary drive from supraspinal centers and/or modulation in afferents other than Ia afferents may have contributed to such an increase in voluntary activation.


Subject(s)
Foot/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training , Adaptation, Physiological/physiology , Adult , H-Reflex/physiology , Humans , Isometric Contraction/physiology , Male , Motor Neurons/physiology , Young Adult
8.
Scand J Med Sci Sports ; 18(3): 383-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18028283

ABSTRACT

The primary aim of this study was to examine central fatigue of the plantar flexor muscle group after prolonged running using the twitch interpolation technique. Eight healthy, habitually active male subjects ran on a motorized treadmill for 2 h at a speed corresponding to 75% of peak oxygen uptake (VO(2peak)). Maximal voluntary isometric contraction (MVC) strength as well as the electrically induced twitch produced during MVC [interpolated twitch (IT)] and at rest [resting twitch (RT)] were measured before and after running. The level of activation (LOA) during each MVC was calculated as LOA (%)=100(1-IT/RT). Both MVC and LOA decreased (17+/-16% and 19+/-15%, respectively, P<0.05) after running, whereas RT did not change. The decrease in MVC was correlated with the decrease in LOA (r=0.87, P<0.05). The results demonstrate that after 2 h of treadmill running at an intensity of 75% of VO(2peak), there was a reduction in maximal voluntary plantar flexor muscle strength that was mainly related to central fatigue.


Subject(s)
Isometric Contraction/physiology , Muscle Fatigue/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Physical Endurance/physiology , Running/physiology , Adult , Electric Stimulation , Electromyography , Exercise Test , Humans , Male , Rest/physiology , Risk Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...