Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Article in English | MEDLINE | ID: mdl-38836779

ABSTRACT

Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole-body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r=0.49; P<0.001) and negatively related to resting heart rate (HR, r=-0.39; P<0.001), which was also negatively related to expression of type I muscle fibers (r=-0.41; P<0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59±6%; HR = 57±9 beats/min; SIgalvin = 1.8±0.7 units) or low percentage of type I fibers (30±6%; HR = 71±11; SIgalvin = 0.8±0.3 units; P<0.001 for all variables vs. first group). eNOS expression was: 1. higher in subjects with high type I expression; 2. almost two-fold higher in pools of type I vs. II fibers; 3. only detected in capillaries surrounding muscle fibers; and 4. linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.

2.
PLoS One ; 18(5): e0285581, 2023.
Article in English | MEDLINE | ID: mdl-37205681

ABSTRACT

BACKGROUND: Inorganic nitrate has been shown to acutely improve working memory in adults, potentially by altering cerebral and peripheral vasculature. However, this remains unknown in adolescents. Furthermore, breakfast is important for overall health and psychological well-being. Therefore, this study will investigate the acute effects of nitrate and breakfast on working memory performance, task-related cerebral blood flow (CBF), arterial stiffness, and psychological outcomes in Swedish adolescents. METHODS: This randomised crossover trial will recruit at least 43 adolescents (13-15 years old). There will be three experimental breakfast conditions: (1) none, (2) low-nitrate (normal breakfast), and (3) high-nitrate (concentrated beetroot juice with normal breakfast). Working memory (n-back tests), CBF (task-related changes in oxygenated and deoxygenated haemoglobin in the prefrontal cortex), and arterial stiffness (pulse wave velocity and augmentation index) will be measured twice, immediately after breakfast and 130 min later. Measures of psychological factors and salivary nitrate/nitrite will be assessed once before the conditions and at two-time points after the conditions. DISCUSSION: This study will provide insight into the acute effects of nitrate and breakfast on working memory in adolescents and to what extent any such effects can be explained by changes in CBF. This study will also shed light upon whether oral intake of nitrate may acutely improve arterial stiffness and psychological well-being, in adolescents. Consequently, results will indicate if nitrate intake from beetroot juice or if breakfast itself could acutely improve cognitive, vascular, and psychological health in adolescents, which can affect academic performance and have implications for policies regarding school meals. TRIAL REGISTRATION: The trial has been prospectively registered on 21/02/2022 at https://doi.org/10.1186/ISRCTN16596056. Trial number: ISRCTN16596056.


Subject(s)
Beta vulgaris , Vascular Stiffness , Adult , Humans , Adolescent , Nitrates , Breakfast , Cross-Over Studies , Memory, Short-Term , Pulse Wave Analysis , Cerebrovascular Circulation , Blood Pressure , Dietary Supplements , Randomized Controlled Trials as Topic
3.
Acta Paediatr ; 112(5): 1011-1018, 2023 05.
Article in English | MEDLINE | ID: mdl-36740937

ABSTRACT

AIM: In adults, prolonged periods of sitting have been linked to acute negative effects on vascular structure and function. The aim of this study was to evaluate the acute effects of physical activity (PA) breaks during prolonged sitting on arterial stiffness, cortisol and psychological factors in adolescents. METHODS: Adolescents underwent different short (3-min) breaks starting every 20 min, during 80 min of sitting on three separate days. Breaks were (A) social seated breaks (SOC), (B) low-intensity simple resistance activity PA breaks (SRA) and (C) moderate-intensity step-up PA breaks (STEP). The arterial stiffness measures were augmentation index (AIx), AIx@75 and pulse wave velocity (PWV). Cortisol was measured from saliva. Psychological factors were self-reported. RESULTS: Eleven girls and six boys (average age 13.6 ± 0.7 years) participated, with average baseline heart rates of 72 ± 11 bpm, systolic/diastolic blood pressure 111 ± 7/64 ± 6 mmHg and cortisol 10.9 ± 5.8 nmoL/L. PWV, cortisol and psychological factors did not change after any of the conditions. AIx@75 increased significantly (4.9 ± 8.7-9.2 ± 13.2) after the STEP intervention compared with SOC and SRA (time × condition p < 0.05). CONCLUSION: Arterial stiffness increased after prolonged sitting with frequent, short step-up activity breaks. The results indicate potential important intensity-dependent effects of physical activity on vascular regulation in youth.


Subject(s)
Vascular Stiffness , Male , Adult , Female , Humans , Adolescent , Child , Hydrocortisone , Pulse Wave Analysis , Blood Pressure , Exercise
4.
Am J Physiol Endocrinol Metab ; 324(5): E390-E401, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36791323

ABSTRACT

There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here, we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1), area occupied by type I fibers = 61.0 ± 11.8%; 2), type I area = 36.0 ± 4.9% (P < 0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole body insulin sensitivity decreased markedly after starvation in group 1 (P < 0.01), whereas the decrease in group 2 was substantially smaller (P = 0.06). Nonesterified fatty acids and ß-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 versus 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.NEW & NOTEWORTHY Whether lipid-mediated insulin resistance occurs as a result of an increased or decreased capacity of skeletal muscle to oxidize lipids has been debated. We show that a 3-day fast results in increases in circulating lipids and insulin resistance in subjects expressing a high or low proportion of type I muscle fibers. High expression of type I is associated with a higher capacity to oxidize lipids and a greater loss of insulin sensitivity after starvation.


Subject(s)
Insulin Resistance , Starvation , Humans , Fatty Acids, Nonesterified/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Starvation/metabolism , Lipids , Lipid Metabolism , Oxidation-Reduction
5.
Front Public Health ; 10: 1035521, 2022.
Article in English | MEDLINE | ID: mdl-36438224

ABSTRACT

Background: Previous evidence supports a beneficial effect of physical activity on executive function across the whole lifespan. Yet, the interrelationships of the intensities of physical activity, cardiorespiratory fitness, and executive function require further investigation in adults. Aim: Using unfiltered accelerometry data and high-resolution intensity classification, we sought to estimate the associations of physical activity with cardiorespiratory fitness and executive function in adult office workers. Methods: We included 343 full-time office workers (mean age: 42.41 years, range of age: 36-49 years). Executive function was assessed using Stroop, Trail making tests (part-B), and 2-back tests, and a composite score was produced to reflect the general executive function performance. Physical activity was assessed using the Actigraph GT3X+-monitor, worn by each participant for seven days at the hip. Raw accelerometry data were processed by the 10 Hz frequency extended method and divided into 22 intensity bins and sleep time. Cardiorespiratory fitness was estimated using the submaximal Ekblom-Bak cycle ergometer test. Data were analyzed using partial least squares regressions. Results: In adults, cardiorespiratory fitness was closely correlated with a wide range of absolute physical activity intensity patterns. A higher level of executive function in adults was associated with both higher absolute physical activity intensities and cardiorespiratory fitness, which was independent of age, sex, and education levels. A very weak association between intensities, fitness, and executive function was observed in high-fit adults. Among low-fit adults, although a positive association started already toward the upper end of moderate intensity, there still appeared to be an association between intensities, cardiorespiratory fitness, and executive function. That is, cardiorespiratory fitness may mediate the association between absolute physical activity intensities and executive function up to a certain level. Conclusion: The maintenance of executive function in adulthood was related to both physical activity intensities and cardiorespiratory fitness, while their interrelationship was not equal across fitness levels. It is highly recommended to consider the cardiorespiratory fitness level in future studies that focus on executive functions in aging as well when designing individualized physical activity training programs.


Subject(s)
Cardiorespiratory Fitness , Middle Aged , Adult , Humans , Executive Function , Exercise
6.
Behav Brain Res ; 430: 113926, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35568076

ABSTRACT

Brain-derived neurotrophic factor (BDNF) and cortisol are both capable of modulating synaptic plasticity, but it is unknown how physical activity-induced changes in their plasma levels relate to corticospinal plasticity in humans. Sixteen inactive middle-aged men and women participated in three separate interventions consisting of 3 h prolonged sitting (SIT); 3 h sitting interrupted every 30 min with frequent short physical activity breaks (FPA); and 2.5 h prolonged sitting followed by 25 min of moderate intensity exercise (EXE). These 3 h sessions were each followed by a 30 min period of paired associative stimulation over the primary motor cortex (PAS). Blood samples were taken and corticospinal excitability measured at baseline, pre PAS, 5 min and 30 min post PAS. Here we report levels of plasma BDNF and cortisol over three activity conditions and relate these levels to previously published changes in corticospinal excitability of a non-activated thumb muscle. There was no interaction between time and condition in BDNF, but cortisol levels were significantly higher after EXE compared to after SIT and FPA. Higher cortisol levels at pre PAS predicted larger increases in corticospinal excitability from baseline to all subsequent time points in the FPA condition only, while levels of BDNF at pre PAS did not predict such changes in any of the conditions. Neither BDNF nor cortisol modified changes from pre PAS to the subsequent time points, suggesting that the increased corticospinal excitability was not mediated though an augmented effect of the PAS protocol. The relationship between cortisol and plasticity has been suggested to be inverted U-shaped. This is possibly why the moderately high levels of cortisol seen in the FPA condition were positively associated with changes AURC, while the higher cortisol levels seen after EXE were not. A better understanding of the mechanisms for how feasible physical activity breaks affect neuroplasticity can inform the theoretical framework for how work environments and schedules should be designed.


Subject(s)
Brain-Derived Neurotrophic Factor , Hydrocortisone , Evoked Potentials, Motor/physiology , Exercise/physiology , Female , Humans , Male , Middle Aged , Neuronal Plasticity/physiology , Transcranial Magnetic Stimulation/methods
7.
J Clin Endocrinol Metab ; 107(7): e2729-e2737, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35405014

ABSTRACT

CONTEXT: Muscle fiber composition is associated with peripheral insulin action. OBJECTIVE: We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia. METHODS: Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group 1 (n = 11), area occupied by type I muscle fibers = 61.0 ± 11.8%, and group 2 (n = 8), type I area = 36.0 ± 4.9% (P < 0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition, and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity, and secretion were determined. RESULTS: Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group 2 vs group 1 (P = 0.019). First-phase insulin release (area under the insulin curve during 10 minutes after glucose infusion) was increased by almost 4-fold in group 2 vs group 1 (P = 0.01). Whole-body insulin sensitivity was correlated with percentage area occupied by type I fibers (r = 0.54; P = 0.018) and capillary density in muscle (r = 0.61; P = 0.005) but not with mitochondrial respiration. Insulin release was strongly related to percentage area occupied by type II fibers (r = 0.93; P < 0.001). CONCLUSIONS: Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose-stimulated insulin secretion prior to onset of clinical manifestations.


Subject(s)
Insulin Resistance , Muscular Diseases , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Resistance/physiology , Insulin Secretion , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Quadriceps Muscle/metabolism
8.
Trials ; 23(1): 22, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991692

ABSTRACT

BACKGROUND: Physical activity breaks are widely being implemented in school settings as a solution to increase academic performance and reduce sitting time. However, the underlying physiological mechanisms suggested to improve cognitive function from physical activity and the frequency, intensity, and duration of the breaks remain unknown. This study will investigate the effects of frequent, short physical activity breaks during prolonged sitting on task-related prefrontal cerebral blood flow, cognitive performance, and psychological factors. Additionally, the moderating and mediating effects of arterial stiffness on changes in cerebral blood flow will be tested. METHODS: This is a protocol for a randomized crossover study that will recruit 16 adolescents (13-14 years old). Participants will undergo three different conditions in a randomized order, on three separate days, involving sitting 80 min with a different type of break every 17 min for 3 min. The breaks will consist of (1) seated social breaks, (2) simple resistance activities, and (3) step-up activities. Before and after the 80-min conditions, prefrontal cerebral blood flow changes will be measured using functional near-infrared spectroscopy (primary outcome), while performing working memory tasks (1-, 2-, and 3-back tests). Arterial stiffness (augmentation index and pulse wave velocity) and psychological factors will also be assessed pre and post the 80-min interventions. DISCUSSION: Publication of this protocol will help to increase rigor in science. The results will inform regarding the underlying mechanisms driving the association between physical activity breaks and cognitive performance. This information can be used for designing effective and feasible interventions to be implemented in schools. TRIAL REGISTRATION: www.ClinicalTrials.gov , NCT04552626 . Retrospectively registered on September 21, 2020.


Subject(s)
Pulse Wave Analysis , Sedentary Behavior , Adolescent , Brain , Cross-Over Studies , Exercise , Humans , Randomized Controlled Trials as Topic
9.
Front Hum Neurosci ; 15: 719509, 2021.
Article in English | MEDLINE | ID: mdl-34602995

ABSTRACT

Prolonged sitting is increasingly common and may possibly be unfavorable for cognitive function and mood. In this randomized crossover study, the effects of frequent, short physical activity breaks during prolonged sitting on cognitive task-related activation of the prefrontal cortex were investigated. The effects on working memory, psychological factors, and blood glucose were also examined, and whether arterial stiffness moderated prefrontal cortex activation. Thirteen subjects (mean age 50.5 years; eight men) underwent three 3-h sitting conditions, interrupted every 30-min by a different 3-min break on separate, randomized-ordered days: seated social interactions (SOCIAL), walking (WALK), or simple resistance activities (SRA). Arterial stiffness was assessed at baseline. Before and after each 3-h condition, psychological factors (stress, mood, sleepiness, and alertness) were assessed through questionnaires and functional near-infrared spectroscopy (fNIRS) was used to measure changes in prefrontal oxygenated hemoglobin (Oxy-Hb), indicative of cortical activation, while performing working memory tasks [1- (baseline), 2-, and 3-back]. Blood glucose levels were continuously measured throughout the conditions. Results revealed no significant changes in Oxy-Hb during the 2-back compared with the 1-back test in any condition, and no time-by-condition interactions. During the 3-back test, there was a significant decrease in Oxy-Hb compared with the 1-back after the WALK condition in the right prefrontal cortex, but there were no time-by-condition interactions, although 3-back reaction time improved only in the WALK condition. Mood and alertness improved after the WALK condition, which was significantly different from the SOCIAL condition. Arterial stiffness moderated the effects, such that changes in Oxy-Hb were significantly different between WALK and SOCIAL conditions only among those with low arterial stiffness. Blood glucose during the interventions did not differ between conditions. Thus, breaking up prolonged sitting with frequent, short physical activity breaks may reduce right prefrontal cortex activation, with improvements in some aspects of working memory, mood, and alertness. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT04137211.

10.
Article in English | MEDLINE | ID: mdl-34360287

ABSTRACT

The bi-directional, day-to-day associations between daytime physical activity and sedentary behavior, and nocturnal sleep, in office workers are unknown. This study investigated these associations and whether they varied by weekday or weekend day. Among 324 Swedish office workers (mean age 42.4 years; 33.3% men), moderate-to-vigorous physical activity (MVPA), and sedentary behaviors and sleep (total sleep time (TST) and sleep efficiency (SE)) were ascertained by using accelerometers (Actigraph GT3X) over 8 days. Multilevel linear mixed models were used to assess the bi-directional, day-to-day, within-person associations. Additional analyses stratified by weekend/weekday were performed. On average, participants spent 6% (57 min) of their day in MVPA and 59% (9.5 h) sedentary, and during the night, TST was 7 h, and SE was 91%. More daytime sedentary behavior was associated with less TST that night, and reciprocally, more TST at night was associated with less sedentary behavior on the following weekday. Greater TST during the night was also associated with less MVPA the next day, only on weekdays. However, daytime MVPA was not associated with TST that night. Higher nighttime SE was associated with greater time spent sedentary and in MVPA on the following day, regardless if weekday or weekend day. Sleep may be more crucial for being physically active the following day than vice versa, especially on weekdays. Nevertheless, sedentary behavior's relation with sleep time may be bi-directional. Office workers may struggle with balancing sleep and physical activity time.


Subject(s)
Accelerometry , Sedentary Behavior , Adult , Exercise , Female , Humans , Male , Sleep , Time Factors
11.
Sci Rep ; 11(1): 16724, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408221

ABSTRACT

VO2max (maximal oxygen consumption), a validated measure of aerobic fitness, has been associated with better cerebral artery compliance and measures of brain morphology, such as higher cortical thickness (CT) in frontal, temporal and cingular cortices, and larger grey matter volume (GMV) of the middle temporal gyrus, hippocampus, orbitofrontal cortex and cingulate cortex. Single sessions of physical exercise can promptly enhance cognitive performance and brain activity during executive tasks. However, the immediate effects of exercise on macro-scale properties of the brain's grey matter remain unclear. We investigated the impact of one session of moderate-intensity physical exercise, compared with rest, on grey matter volume, cortical thickness, working memory performance, and task-related brain activity in older adults. Cross-sectional associations between brain measures and VO2max were also tested. Exercise did not induce statistically significant changes in brain activity, grey matter volume, or cortical thickness. Cardiovascular fitness, measured by VO2max, was associated with lower grey matter blood flow in the left hippocampus and thicker cortex in the left superior temporal gyrus. Cortical thickness was reduced at post-test independent of exercise/rest. Our findings support that (1) fitter individuals may need lower grey matter blood flow to meet metabolic oxygen demand, and (2) have thicker cortex.


Subject(s)
Cerebrovascular Circulation , Cognition , Gray Matter , Magnetic Resonance Imaging , Oxygen/metabolism , Aged , Female , Gray Matter/blood supply , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Humans , Male , Middle Aged
12.
BMC Public Health ; 21(1): 1048, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078342

ABSTRACT

BACKGROUND: The importance of physical activity on health is clear, but changing behaviour is difficult. Successful interventions aiming to improve physical activity and reduce sedentary behaviour is therefore of importance. The aim of this study was to evaluate effects on motivation, self-efficacy and barriers to change behaviour from two different behavioural intervention focusing either on reducing sedentary behaviour or on increasing physical activity as compared to a waiting list control group. METHODS: The study was designed as a cluster randomized control trial (RCT) within two private companies. Self-efficacy, motivation and perceived barriers were together with demographic variables assessed before and after a 6-month intervention. Participant cluster teams were randomly allocated to either the physical activity intervention (iPA), the sedentary behaviour intervention (iSED), or control group. The intervention was multi componential and included motivational counselling based on Cognitive behaviour therapy and Motivational interviewing, group activities and management involvement. Group differences were determined using Bayesian multilevel modelling (parameter estimate; credible interval (CI)), analysing complete cases and those who adhered to the protocol by adhering to at least 3 out of 5 intervention sessions. RESULTS: After the intervention, the complete cases analysis showed that the iPA group had significantly higher autonomous motivation (0.33, CI: 0.05-0.61) and controlled motivation (0.27, CI: 0.04-0.51) for physical activity compared with the control group. The iSED group scored less autonomous and controlled motivation compared to the iPA group (0.38, CI: - 0.69- -0.087 respectively - 0.32, CI: - 0.57-0.07) but no significant differences compared with the control group. Among individuals that adhered to the protocol, the results showed higher scores on Exercise (3.03, CI: 0.28-6.02) and Sedentary self-efficacy (3.59, CI: 0.35-7.15) for individuals in the iPA group and on Sedentary self-efficacy (4.77, CI: 0.59-9.44) for the iSED group compared to the control group. CONCLUSION: These findings indicate that the interventions were successful in increasing self-efficacy in each intervention group and autonomous motivation for exercise in the iPA group, in particular when actively participating in the motivational counselling sessions.


Subject(s)
Motivational Interviewing , Sedentary Behavior , Exercise , Humans , Motivation , Self Efficacy
13.
J Strength Cond Res ; 35(2): 428-435, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-29319600

ABSTRACT

ABSTRACT: Crommert, ME, Bjerkefors, A, Tarassova, O, and Ekblom, MM. Abdominal muscle activation during common modifications of the trunk curl-up exercise. J Strength Cond Res 35(2): 428-435, 2021-The purpose of this study was to investigate effects of common modifications of trunk curl-up exercise on the involvement of the abdominal muscles, particularly the deepest muscle layer, transversus abdominis (TrA). Ten healthy females performed 5 different variations of the trunk curl-up at a standardized speed, varying the exercise by assuming 3 different arm positions and applying left and right twist. Indwelling fine-wire electromyography (EMG) electrodes were used to record from TrA, obliquus internus (OI), obliquus externus (OE), and rectus abdominis (RA) unilaterally on the right side. Increasing the load by changing the arm position during a straight trunk curl-up increased the EMG of all abdominal muscles. Obliquus internus and TrA showed higher activation during right twist compared with left twist, whereas OE displayed the opposite pattern. Rectus abdominis did not show any change in activation level between twisting directions. The apparent load dependency on the activation level of all muscles, and the twisting direction dependency of all muscles except RA, are in keeping with the fiber orientation of the muscles. Notably, also TrA, with a less obvious mechanical role with regards to fiber orientation, increased activation with load during the straight trunk curl-up. However, the highest activation level of TrA during the trunk curl-up was only 40% of a maximum contraction; thus, it might not be the most suitable strength training exercise for this muscle.


Subject(s)
Abdominal Muscles , Torso , Electromyography , Exercise Therapy , Female , Humans , Muscle Contraction , Rectus Abdominis
14.
Article in English | MEDLINE | ID: mdl-35010526

ABSTRACT

A knowledge gap remains in understanding how to improve the intervention effectiveness in office workers targeting physically active (PA) behavior. We aim to identify the modifying effect of executive function (EF) on the intervention effectiveness targeting PA-behaviors, and to verify whether the observed effect varies by Job Demand Control (JDC) categories. This workplace-based intervention study included 245 participants who were randomized into a control group and two intervention arms-promoting physical activity (iPA) group or reducing sedentary behavior (iSED) group. The interventions were conducted through counselling-based cognitive behavioral therapy and team activities over 6 months. PA-behaviors were measured by an accelerometer. EF was assessed by the Trail Making Test-B, Stroop, and n-back test. The JDC categories were measured by the demand control questionnaire. Higher EF level at baseline was significantly associated with the intervention effect on increased sleep time (ß-coefficient: 3.33, p = 0.003) and decreased sedentary time (-2.76, p = 0.049) in the iSED-group. Participants with active jobs (high job demands, high control) presented significantly increased light-intensity PA in the iSED-group in comparison to the control group. Among participants with a high level of EF and active jobs, relative to the control group, the iPA-group showed a substantial increase in light-intensity PA (1.58, p = 0.036) and the iSED-group showed a tendency of reducing sedentary behavior (-5.35, p = 0.054). The findings suggest that office workers with a high EF and active jobs may benefit most from an intervention study targeting PA-behaviors.


Subject(s)
Executive Function , Sedentary Behavior , Exercise , Humans , Occupations , Workplace
15.
BMC Public Health ; 20(1): 1329, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32873260

ABSTRACT

BACKGROUND: Interventions to increase physical activity or reduce sedentary behaviour within the workplace setting have shown mixed effects. This cluster randomised controlled trial assessed whether multi-component interventions, focusing on changes at the individual, environmental, and organisational levels, either increased physical activity or reduced sedentary behaviour, compared to a passive control group. METHODS: Teams of office-workers from two companies participated in one of two interventions (iPA: targeting physical activity; or iSED: targeting sedentary behaviour), or wait-list control group (C). Exclusion criterion was very high physical activity level (MVPA ≥30 min/day in ≥10 min bouts every day). Randomisation occurred at the level of workplace cluster, and groups were randomly allocated (1:1) with stratification for company and cluster size. Personnel involved in data collection and processing were blinded to group allocation. Both interventions included five sessions of cognitive behavioural therapy counselling for 6 months. iPA included counselling focused on physical activity, access to a gym, and encouragement to exercise, and go for lunch walks. iSED included counselling on sedentary behaviour and encouragement to reduce sitting and increase engagement in standing- and walking-meetings. At baseline and the 6-month mark accelerometers were worn on the hip and thigh for 7 days. The primary outcomes were group differences in time spent in moderate-to-vigorous intensity physical activity (%MVPA) and in sedentary behaviour (%), analysed using Bayesian multilevel modelling for those with complete data. RESULTS: Two-hundred and sixty three office workers (73% women, mean age 42 ± 9 years, education 15 ± 2 years) were randomised into 23 cluster teams (iPA n = 84, 8 clusters; iSED n = 87, 7 clusters; C n = 92, 7 clusters). No significant group differences (posterior mean ratios: 95% credible interval) were found after the intervention for %MVPA or for %Sedentary. %MVPA: iPA vs C (0·04: - 0·80-0·82); iSED vs C (0·47: - 0·41-1·32); iPA vs iSED (0·43: - 0·42-1·27). %Sedentary: iPA vs C (1·16: - 1·66-4·02); iSED vs C (- 0·44: - 3·50-2·64); iPA vs iSED (- 1·60: - 4·72-1·47). CONCLUSIONS: The multi-component interventions focusing on either physical activity or sedentary behaviour were unsuccessful at increasing device-measured physical activity or reducing sedentary behaviour compared to a control group. TRIAL REGISTRATION: ISRCTN, ISRCTN92968402 . Registered 27/2/2018, recruitment started 15/03/2018.


Subject(s)
Exercise , Health Promotion/methods , Sedentary Behavior , Workplace , Accelerometry , Adult , Cluster Analysis , Cognitive Behavioral Therapy , Female , Humans , Male , Middle Aged , Sweden
16.
Front Physiol ; 11: 1080, 2020.
Article in English | MEDLINE | ID: mdl-32982796

ABSTRACT

Physical exercise (PE) has been shown to improve brain function via multiple neurobiological mechanisms promoting neuroplasticity. Cognitive exercise (CE) combined with PE may show an even greater effect on cognitive function. Brain-derived neurotrophic factor (BDNF) is important for neuroplastic signaling, may reduce with increasing age, and is confounded by fitness. The source and physiological role of human peripheral blood BDNF in plasma (pBDNF) is thought to differ from that in serum (sBDNF), and it is not yet known how pBDNF and sBDNF respond to PE and CE. A training intervention study in healthy older adults investigated the effects of acute (35 min) and prolonged (12 weeks, 30 sessions) CE and PE, both alone and in combination, on pBDNF and sBDNF. Cross-sectional associations between baseline pBDNF, sBDNF and cardiorespiratory fitness (CRF) were also investigated. Participants (65-75 years) were randomly assigned to four groups and prescribed either CE plus 35 min of rest (n = 21, 52% female); PE [performed on a cycle ergometer at moderate intensity (65-75% of individual maximal heart rate)] plus 35 min of rest (n = 27, 56% female); CE plus PE (n = 24, 46% female), or PE plus CE (n = 25, 52% female). Groups were tested for CRF using a maximal treadmill ergometer test (VO2peak); BDNF levels (collected 48 h after CRF) during baseline, after first exercise (PE or CE) and after second exercise (PE, CE or rest); and cognitive ability pre and post 12-week training. At both pre and post, pBDNF increased after CE and PE (up to 222%), and rest (∼67%), whereas sBDNF increased only after PE (up to 18%) and returned to baseline after rest. Acute but not prolonged PE increased both pBDNF and sBDNF. CE induced acute changes in pBDNF only. Baseline pBDNF was positively associated with baseline sBDNF (n = 93, r = 0.407, p < 0.001). No changes in CRF were found in any of the groups. Baseline CRF did not correlate with baseline BDNF. Even though baseline pBDNF and sBDNF were associated, patterns of changes in pBDNF and sBDNF in response to exercise were explicitly different. Further experimental scrutiny is needed to clarify the biological mechanisms of these results.

17.
Front Hum Neurosci ; 14: 273, 2020.
Article in English | MEDLINE | ID: mdl-32760263

ABSTRACT

Introduction: Extended periods of sitting may have detrimental effects on brain health. However, the effects of breaking up prolonged sedentary periods with frequent, short physical activity bouts on mechanisms to improve brain health remain unclear. Therefore, this study aims to investigate the immediate effects of uninterrupted sitting and frequent, short bouts of physical activity on cerebral blood flow and cognitive function in the prefrontal cortex in middle-aged adults. Methods: This is a protocol article to describe a randomized crossover study. We will collect data from 13 healthy adults, aged between 40 and 60 years old, with a body mass index <35 kg/m2. Participants will be required to come into the laboratory on three occasions, sit for 3 h, and perform a different type of break for 3 min every 30 min at each visit in a random order, being either: (1) a social break; (2) brisk walk on a treadmill; or (3) simple resistance activities. Before and after each experimental condition, cerebral blood flow (primary outcome) will be measured using functional near-infrared spectroscopy (fNIRS), with short-separation channels, and working memory (1-, 2-, and 3-back on the computer) will be assessed. The following additional secondary outcomes will be collected: psychological factors (questionnaires); arterial stiffness; salivary cortisol levels; and blood glucose levels. Conclusion: The results from this randomized crossover study will determine the effects of uninterrupted sitting and frequent, short bouts of physical activity on cerebral blood flow and cognitive performance. Publication of this study protocol emphasizes the importance of registration and publication of protocols in the field of sedentary behavior research.

18.
Article in English | MEDLINE | ID: mdl-31963740

ABSTRACT

Physical activity reduces the risk of several noncommunicable diseases, and a number of studies have found self-reported physical activity to be associated with sickness absence. The aim of this study was to examine if cardiorespiratory fitness, device-measured physical activity, and sedentary behaviour were associated with sickness absence among office workers. Participants were recruited from two Swedish companies. Data on sickness absence (frequency and duration) and covariates were collected via questionnaires. Physical activity pattern was assessed using ActiGraph and activPAL, and fitness was estimated from submaximal cycle ergometry. The sample consisted of 159 office workers (67% women, aged 43 ± 8 years). Higher cardiorespiratory fitness was significantly associated with a lower odds ratio (OR) for both sickness absence duration (OR = 0.92, 95% confidence interval (CI) 0.87-0.96) and frequency (OR = 0.93, 95% CI 0.90-0.97). Sedentary time was positively associated with higher odds of sickness absence frequency (OR = 1.03, 95% CI 0.99-1.08). No associations were found for physical activity at any intensity level and sickness absence. Higher sickness absence was found among office workers with low cardiorespiratory fitness and more daily time spent sedentary. In contrast to reports using self-reported physical activity, device-measured physical activity was not associated with sickness absence.


Subject(s)
Cardiorespiratory Fitness , Exercise , Sedentary Behavior , Sick Leave/statistics & numerical data , Adult , Female , Humans , Male , Middle Aged , Odds Ratio , Physical Fitness , Surveys and Questionnaires , Sweden , Young Adult
19.
J Strength Cond Res ; 34(6): 1600-1608, 2020 Jun.
Article in English | MEDLINE | ID: mdl-29373430

ABSTRACT

Gago, P, Zoellner, A, Cezar, J, and Ekblom, MM. Post activation potentiation and concentric contraction performance: effects on rate of torque development, neuromuscular efficiency and tensile properties. J Strength Cond Res 34(6): 1600-1608, 2020-This study investigated how a 6-second maximal voluntary isometric contraction (MVIC) conditioning affected plantar flexor twitch rate of torque development (RTDTW), as well as peak torque (PTCC) and rate of torque development (RTDCC) of maximal voluntary concentric contractions (MVCC) performed at 60°·s. RTDCC and normalized triceps surae electromyography signals (EMGTS) were measured during different phases of contraction. In addition, muscle tendon unit passive stiffness index (SI) calculated from the torque-angle relation was measured after each MVCC. Enhancements were found in the RTDTW immediately (by 59.7%) and up to 480 seconds (by 6.0%) after MVIC (p < 0.05). RTDCC during the 100-200 ms, 50-200 ms, and 0-200 ms phases and PTCC were enhanced (by 5.7-9.5%) from 90 to 300 seconds after conditioning (p < 0.05). Neuromuscular efficiency increased (decreased EMGTS/RTDCC) in the 50-200 ms and 0-200 ms phases by 8.8-12.4%, from 90 to 480 seconds after MVIC (p < 0.05). No significant changes were found in the SI or in RTDCC during the 50-100 ms phase, suggesting that the enhancements reported reflect mainly contractile rather than neural or tensile mechanisms. PAP effects on PTCC and RTDCC were significant and more durable at a lower velocity than previously reported. Enhancement in RTDCC and neuromuscular efficiency were found to be more prominent in later phases (>100 ms) of the MVCC. This suggests that enhanced contractile properties, attained through MVIC, benefit concentric contraction performance.


Subject(s)
Exercise/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Torque , Adult , Biomechanical Phenomena , Electromyography , Female , Humans , Isometric Contraction/physiology , Male , Young Adult
20.
Article in English | MEDLINE | ID: mdl-31783476

ABSTRACT

Increasing evidence from animal experiments suggests that physical activity (PA) promotes neuroplasticity and learning. For humans, most research on the relationship between PA, sedentary behaviour (SB), and cognitive function has relied on self-reported measures of behaviour. Office work is characterised by high durations of SB combined with high work demands. While previous studies have shown that fitter office workers outperform their less fit colleagues in cognitive tests, the importance of PA and SB remains unknown. This study investigated associations between objectively measured PA and SB, using hip-worn accelerometers, and cognitive functions in 334 office workers. Time spent in moderate-to-vigorous PA (MVPA) was not associated with any cognitive outcome. However, time spent in SB tended to be positively associated with words recalled in free recall (ß = 0.125). For the least fit participants, the average length of MVPA bouts was favourably related to Stroop performance (ß = -0.211), while for the fitter individuals, a longer average length of MVPA bouts was related to worse recognition (ß = -0.216). While our findings indicate that the length of MVPA bouts was associated with better Stroop performance in the least fit participants, our findings do not support the notion that more time spent in MVPA or less time in SB is associated with better cognitive function.


Subject(s)
Cognition/physiology , Exercise/physiology , Occupational Health , Sedentary Behavior , Accelerometry , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Workplace
SELECTION OF CITATIONS
SEARCH DETAIL
...