Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 5593, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811150

ABSTRACT

Complex behaviours may be viewed as sequences of modular actions, each elicited by specific sensory cues in their characteristic timescales. From this perspective, we can construct models in which unitary behavioural modules are hierarchically placed in context of related actions. Here, we analyse antennal positioning reflex in hawkmoths as a tuneable behavioural unit. Mechanosensory feedback from two antennal structures, Böhm's bristles (BB) and Johnston's organs (JO), determines antennal position. At flight onset, antennae attain a specific position, which is maintained by feedback from BB. Simultaneously, JO senses deflections in flagellum-pedicel joint due to frontal airflow, to modulate its steady-state position. Restricting JO abolishes positional modulation but maintains stability against perturbations. Linear feedback models are sufficient to predict antennal dynamics at various set-points. We modelled antennal positioning as a hierarchical neural-circuit in which fast BB feedback maintains instantaneous set-point, but slow JO feedback modulates it, thereby elucidating mechanisms underlying its robustness and flexibility.


Subject(s)
Air Movements , Flight, Animal/physiology , Moths/physiology , Reflex/physiology , Wings, Animal/physiology , Animals , Behavior, Animal/physiology , Cues , Female , Flagella , Male , Moths/anatomy & histology , Motor Neurons/physiology , Nervous System Physiological Phenomena , Physical Stimulation , Wings, Animal/innervation
2.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28250187

ABSTRACT

As a consequence of global environmental change, management strategies that can deal with unexpected change in resource dynamics are becoming increasingly important. In this paper we undertake a novel approach to studying resource growth problems using a computational form of adaptive management to find optimal strategies for prevalent natural resource management dilemmas. We scrutinize adaptive management, or learning-by-doing, to better understand how to simultaneously manage and learn about a system when its dynamics are unknown. We study important trade-offs in decision-making with respect to choosing optimal actions (harvest efforts) for sustainable management during change. This is operationalized through an artificially intelligent model where we analyze how different trends and fluctuations in growth rates of a renewable resource affect the performance of different management strategies. Our results show that the optimal strategy for managing resources with declining growth is capable of managing resources with fluctuating or increasing growth at a negligible cost, creating in a management strategy that is both efficient and robust towards future unknown changes. To obtain this strategy, adaptive management should strive for: high learning rates to new knowledge, high valuation of future outcomes and modest exploration around what is perceived as the optimal action.


Subject(s)
Conservation of Natural Resources/methods , Decision Making , Forecasting , Humans , Learning
3.
Article in English | MEDLINE | ID: mdl-23801960

ABSTRACT

Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the characteristic burst-like activity seen in both direct and indirect pathway striatal medium spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are responsible for decreasing the activity in SNr. In particular, our simulations indicate that bursting in only a few percent of the direct pathway MSNs is sufficient for completely inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses allow the system to become sensitive to irregularly firing GPe subpopulations, as seen in dopamine depleted conditions, even when the GPe mean firing rate does not change. Similar to the direct pathway, simulations indicate that only a few percent of bursting indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model predicts depressing STN-SNr synapses, since such an assumption explains experiments showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic response in SNr, while a sustained STN activation has minor effects. This can be explained if STN-SNr synapses are depressing such that their effects are counteracted by the (known) depressing GPe-SNr inputs.

4.
Biol Cybern ; 107(5): 545-64, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23430277

ABSTRACT

Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.


Subject(s)
Locomotion/physiology , Models, Biological , Robotics , Urodela/physiology , Animals , Cybernetics , Extremities/physiology , Feedback, Sensory/physiology , Nerve Net/physiology , Swimming/physiology
5.
Biol Cybern ; 107(5): 497-512, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23124918

ABSTRACT

This study addresses mechanisms for the generation and selection of visual behaviors in anamniotes. To demonstrate the function of these mechanisms, we have constructed an experimental platform where a simulated animal swims around in a virtual environment containing visually detectable objects. The simulated animal moves as a result of simulated mechanical forces between the water and its body. The undulations of the body are generated by contraction of simulated muscles attached to realistic body components. Muscles are driven by simulated motoneurons within networks of central pattern generators. Reticulospinal neurons, which drive the spinal pattern generators, are in turn driven directly and indirectly by visuomotor centers in the brainstem. The neural networks representing visuomotor centers receive sensory input from a simplified retina. The model also includes major components of the basal ganglia, as these are hypothesized to be key components in behavior selection. We have hypothesized that sensorimotor transformation in tectum and pretectum transforms the place-coded retinal information into rate-coded turning commands in the reticulospinal neurons via a recruitment network mimicking the layered structure of tectal areas. Via engagement of the basal ganglia, the system proves to be capable of selecting among several possible responses, even if exposed to conflicting stimuli. The anatomically based structure of the control system makes it possible to disconnect different neural components, yielding concrete predictions of how animals with corresponding lesions would behave. The model confirms that the neural networks identified in the lamprey are capable of responding appropriately to simple, multiple, and conflicting stimuli.


Subject(s)
Lampreys/physiology , Locomotion/physiology , Models, Biological , Animals , Basal Ganglia/physiology , Behavior, Animal , Cybernetics , Nerve Net/physiology , Photic Stimulation , Robotics , Tectum Mesencephali/physiology , Vision, Ocular/physiology
6.
Front Neurorobot ; 5: 3, 2011.
Article in English | MEDLINE | ID: mdl-22069388

ABSTRACT

Here, we investigate the role of sensory feedback in gait generation and transition by using a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG) which is composed of simulated spiking neurons with adaptation. The CPG consists of a body-CPG and four limb-CPGs that are interconnected via synapses both ipsilaterally and contralaterally. We use the model both with and without sensory modulation and four different combinations of ipsilateral and contralateral coupling between the limb-CPGs. We found that the proprioceptive sensory inputs are essential in obtaining a coordinated lateral sequence walking gait (walking). The sensory feedback includes the signals coming from the stretch receptor like intraspinal neurons located in the girdle regions and the limb stretch receptors residing in the hip and scapula regions of the salamander. On the other hand, walking trot gait (trotting) is more under central (CPG) influence compared to that of the peripheral or sensory feedback. We found that the gait transition from walking to trotting can be induced by increased activity of the descending drive coming from the mesencephalic locomotor region and is helped by the sensory inputs at the hip and scapula regions detecting the late stance phase. More neurophysiological experiments are required to identify the precise type of mechanoreceptors in the salamander and the neural mechanisms mediating the sensory modulation.

7.
Front Syst Neurosci ; 5: 13, 2011.
Article in English | MEDLINE | ID: mdl-21441994

ABSTRACT

Based on known anatomy and physiology, we present a hypothesis where the basal ganglia motor loop is hierarchically organized in two main subsystems: the arbitration system and the extension system. The arbitration system, comprised of the subthalamic nucleus, globus pallidus, and pedunculopontine nucleus, serves the role of selecting one out of several candidate actions as they are ascending from various brain stem motor regions and aggregated in the centromedian thalamus or descending from the extension system or from the cerebral cortex. This system is an action-input/action-output system whose winner-take-all mechanism finds the strongest response among several candidates to execute. This decision is communicated back to the brain stem by facilitating the desired action via cholinergic/glutamatergic projections and suppressing conflicting alternatives via GABAergic connections. The extension system, comprised of the striatum and, again, globus pallidus, can extend the repertoire of responses by learning to associate novel complex states to certain actions. This system is a state-input/action-output system, whose organization enables it to encode arbitrarily complex Boolean logic rules using striatal neurons that only fire given specific constellations of inputs (Boolean AND) and pallidal neurons that are silenced by any striatal input (Boolean OR). We demonstrate the capabilities of this hierarchical system by a computational model where a simulated generic "animal" interacts with an environment by selecting direction of movement based on combinations of sensory stimuli, some being appetitive, others aversive or neutral. While the arbitration system can autonomously handle conflicting actions proposed by brain stem motor nuclei, the extension system is required to execute learned actions not suggested by external motor centers. Being precise in the functional role of each component of the system, this hypothesis generates several readily testable predictions.

8.
Neuroinformatics ; 8(1): 43-60, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20195795

ABSTRACT

MUSIC is a standard API allowing large scale neuron simulators to exchange data within a parallel computer during runtime. A pilot implementation of this API has been released as open source. We provide experiences from the implementation of MUSIC interfaces for two neuronal network simulators of different kinds, NEST and MOOSE. A multi-simulation of a cortico-striatal network model involving both simulators is performed, demonstrating how MUSIC can promote inter-operability between models written for different simulators and how these can be re-used to build a larger model system. Benchmarks show that the MUSIC pilot implementation provides efficient data transfer in a cluster computer with good scaling. We conclude that MUSIC fulfills the design goal that it should be simple to adapt existing simulators to use MUSIC. In addition, since the MUSIC API enforces independence of the applications, the multi-simulation could be built from pluggable component modules without adaptation of the components to each other in terms of simulation time-step or topology of connections between the modules.


Subject(s)
Cerebral Cortex/physiology , Computer Simulation , Models, Neurological , Neural Networks, Computer , Action Potentials , Animals , Cerebral Cortex/cytology , Corpus Striatum/cytology , Humans , Neural Pathways/physiology , Neurons/physiology , Software , User-Computer Interface
9.
Front Neurorobot ; 4: 112, 2010.
Article in English | MEDLINE | ID: mdl-21206530

ABSTRACT

Computer simulation has been used to investigate several aspects of locomotion in salamanders. Here we introduce a three-dimensional forward dynamics mechanical model of a salamander, with physically realistic weight and size parameters. Movements of the four limbs and of the trunk and tail are generated by sets of linearly modeled skeletal muscles. In this study, activation of these muscles were driven by prescribed neural output patterns. The model was successfully used to mimic locomotion on level ground and in water. We compare the walking gait where a wave of activity in the axial muscles travels between the girdles, with the trotting gait in simulations using the musculo-mechanical model. In a separate experiment, the model is used to compare different strategies for turning while stepping; either by bending the trunk or by using side-stepping in the front legs. We found that for turning, the use of side-stepping alone or in combination with trunk bending, was more effective than the use of trunk bending alone. We conclude that the musculo-mechanical model described here together with a proper neural controller is useful for neuro-physiological experiments in silico.

10.
J Neurosci ; 29(41): 12807-14, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19828793

ABSTRACT

Although it is widely recognized that adaptive behavior emerges from the ongoing interactions among the nervous system, the body, and the environment, it has only become possible in recent years to experimentally study and to simulate these interacting systems. We briefly review work on molluscan feeding, maintenance of postural control in cats and humans, simulations of locomotion in lamprey, insect, cat and salamander, and active vibrissal sensing in rats to illustrate the insights that can be derived from studies of neural control and sensing within a biomechanical context. These studies illustrate that control may be shared between the nervous system and the periphery, that neural activity organizes degrees of freedom into biomechanically meaningful subsets, that mechanics alone may play crucial roles in enforcing gait patterns, and that mechanics of sensors is crucial for their function.


Subject(s)
Brain/physiology , Environment , Models, Biological , Movement/physiology , Sensation/physiology , Animals , Biomechanical Phenomena , Computer Simulation , Humans , Muscle Contraction/physiology , Nonlinear Dynamics , Postural Balance
11.
Front Neuroinform ; 2: 1, 2008.
Article in English | MEDLINE | ID: mdl-18974793

ABSTRACT

Is there any hope of achieving a thorough understanding of higher functions such as perception, memory, thought and emotion or is the stunning complexity of the brain a barrier which will limit such efforts for the foreseeable future? In this perspective we discuss methods to handle complexity, approaches to model building, and point to detailed large-scale models as a new contribution to the toolbox of the computational neuroscientist. We elucidate some aspects which distinguishes large-scale models and some of the technological challenges which they entail.

12.
Biol Cybern ; 99(2): 125-38, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18648849

ABSTRACT

Neurophysiological experiments in walking cats have shown that a number of neural control mechanisms are involved in regulating the movements of the hind legs during locomotion. It is experimentally hard to isolate individual mechanisms without disrupting the natural walking pattern and we therefore introduce a different approach where we use a model to identify what control is necessary to maintain stability in the musculo-skeletal system. We developed a computer simulation model of the cat hind legs in which the movements of each leg are produced by eight limb muscles whose activations follow a centrally generated pattern with no proprioceptive feedback. All linear transfer functions, from each muscle activation to each joint angle, were identified using the response of the joint angle to an impulse in the muscle activation at 65 postures of the leg covering the entire step cycle. We analyzed the sensitivity and stability of each muscle action on the joint angles by studying the gain and pole plots of these transfer functions. We found that the actions of most of the hindlimb muscles display inherent stability during stepping, even without the involvement of any proprioceptive feedback mechanisms, and that those musculo-skeletal systems are acting in a critically damped manner, enabling them to react quickly without unnecessary oscillations. We also found that during the late swing, the activity of the posterior biceps/semitendinosus (PB/ST) muscles causes the joints to be unstable. In addition, vastus lateralis (VL), tibialis anterior (TA) and sartorius (SAT) muscle-joint systems were found to be unstable during the late stance phase, and we conclude that those muscles require neuronal feedback to maintain stable stepping, especially during late swing and late stance phases. Moreover, we could see a clear distinction in the pole distribution (along the step cycle) for the systems related to the ankle joint from that of the other two joints, hip or knee. A similar pattern, i.e., a pattern in which the poles were scattered over the s-plane with no clear clustering according to the phase of the leg position, could be seen in the systems related to soleus (SOL) and TA muscles which would indicate that these muscles depend on neural control mechanisms, which may involve supraspinal structures, over the whole step cycle.


Subject(s)
Cats/physiology , Hindlimb/physiology , Joints/physiology , Muscles/physiology , Walking/physiology , Animals , Computer Simulation , Hindlimb/anatomy & histology , Joints/anatomy & histology , Models, Biological , Muscles/anatomy & histology , Musculoskeletal System/anatomy & histology , Proprioception/physiology
13.
Trends Neurosci ; 29(11): 625-31, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16956675

ABSTRACT

Computer simulations are being used increasingly to gain an understanding of the complex interactions between the neuronal, sensory, muscular and mechanical components of locomotor systems. Recent neuro-mechanical simulations of walking in humans, cats and insects, and of swimming in lampreys, have provided new information on the functional role of specific groups of sensory receptors in regulating locomotion. As we discuss in this review, these studies also make it clear that a full understanding of the neural and mechanical mechanisms that underlie locomotion can be achieved only by using simulations in parallel with physiological investigations. The widespread implementation of this approach would be enhanced by the development of freely available and easy-to-use software tools.


Subject(s)
Locomotion/physiology , Mechanoreceptors/physiology , Models, Biological , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Sensation/physiology , Spinal Cord/physiology , Animals , Computer Simulation , Feedback/physiology
14.
Int J Neural Syst ; 16(6): 393-403, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17285686

ABSTRACT

In this paper we study an attractor network with units that compete locally for activation and we prove that a reduced version of it has fixpoint dynamics. An analysis, complemented by simulation experiments, of the local characteristics of the network's attractors with respect to a parameter controlling the intensity of the local competition is performed. We find that the attractors are hierarchically clustered when the parameter of the local competition is changed.


Subject(s)
Cluster Analysis , Memory/physiology , Models, Neurological , Nerve Net/physiology , Neural Networks, Computer , Humans
15.
Trends Neurosci ; 28(10): 562-9, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16118023

ABSTRACT

Realistic bottom-up modelling has been seminal to understanding which properties of microcircuits control their dynamic behaviour, such as the locomotor rhythms generated by central pattern generators. In this article of the TINS Microcircuits Special Feature, we review recent modelling work on the leech-heartbeat and lamprey-swimming pattern generators as examples. Top-down mathematical modelling also has an important role in analyzing microcircuit properties but it has not always been easy to reconcile results from the two modelling approaches. Most realistic microcircuit models are relatively simple and need to be made more detailed to represent complex processes more accurately. We review methods to add neuromechanical feedback, biochemical pathways or full dendritic morphologies to microcircuit models. Finally, we consider the advantages and challenges of full-scale simulation of networks of microcircuits.


Subject(s)
Biophysics , Nerve Net/physiology , Neural Networks, Computer , Animals , Biophysical Phenomena , Lampreys/physiology , Leeches/physiology , Locomotion/physiology , Models, Biological , Nerve Net/cytology , Swimming/physiology
16.
J Neurophysiol ; 94(6): 4256-68, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16049149

ABSTRACT

Physiological studies in walking cats have indicated that two sensory signals are involved in terminating stance in the hind legs: one related to unloading of the leg and the other to hip extension. To study the relative importance of these two signals, we developed a three-dimensional computer simulation of the cat hind legs in which the timing of the swing-to-stance transition was controlled by signals related to the force in ankle extensor muscles, the angle at the hip joint, or a combination of both. Even in the absence of direct coupling between the controllers for each leg, stable stepping was easily obtained using either a combination of ankle force and hip position signals or the ankle force signal alone. Stable walking did not occur when the hip position signal was used alone. Coupling the two controllers by mutual inhibition restored stability, but it did not restore the correct timing of stepping of the two hind legs. Small perturbations applied during the swing phase altered the movement of the contralateral leg in a manner that tended to maintain alternating stepping when the ankle force signal was included but tended to shift coordination away from alternating when the hip position signal was used alone. We conclude that coordination of stepping of the hind legs depends critically on load-sensitive signals from each leg and that mechanical linkages between the legs, mediated by these signals, play a significant role in establishing the alternating gait.


Subject(s)
Computer Simulation , Hindlimb/physiology , Models, Biological , Muscle, Skeletal/physiology , Walking/physiology , Animals , Behavior, Animal , Biomechanical Phenomena , Cats , Electromyography/methods , Imaging, Three-Dimensional/methods
17.
Arthropod Struct Dev ; 33(3): 287-300, 2004 Jul.
Article in English | MEDLINE | ID: mdl-18089040

ABSTRACT

Insect walking relies on a complex interaction between the environment, body segments, muscles and the nervous system. For the stick insect in particular, previous investigations have highlighted the role of specific sensory signals in the timing of activity of central neural networks driving the individual leg joints. The objective of the current study was to relate specific sensory and neuronal mechanisms, known from experiments on reduced preparations, to the generation of the natural sequence of events forming the step cycle in a single leg. We have done this by simulating a dynamic 3D-biomechanical model of the stick insect coupled to a reduced model of the neural control system, incorporating only the mechanisms under study. The neural system sends muscle activation levels to the biomechanical system, which in turn provides correctly timed propriosensory signals back to the neural model. The first simulations were designed to test if the currently known mechanisms would be sufficient to explain the coordinated activation of the different leg muscles in the middle leg. Two experimental situations were mimicked: restricted stepping where only the coxa-trochanteral joint and the femur-tibia joint were free to move, and the unrestricted single leg movements on a friction-free surface. The first of these experimental situations is in fact similar to the preparation used in gathering much of the detailed knowledge on sensory and neuronal mechanisms. The simulations show that the mechanisms included can indeed account for the entire step cycle in both situations. The second aim was to test to what extent the same sensory and neuronal mechanisms would be adequate also for controlling the front and hind legs, despite the large differences in both leg morphology and kinematic patterns. The simulations show that front leg stepping can be generated by basically the same mechanisms while the hind leg control requires some reorganization. The simulations suggest that the influence from the femoral chordotonal organs on the network controlling levation-depression may have a reversed effect in the hind legs as compared to the middle and front legs. This, and other predictions from the model will have to be confirmed by additional experiments.

18.
J Neurophysiol ; 89(6): 2904-16, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12783946

ABSTRACT

When picking up a familiar object between the index finger and the thumb, the motor commands are predetermined by the CNS to correspond to the frictional demand of the finger-object contact area. If the friction is less than expected, the object will start to slip out of the hand, giving rise to unexpected sensory information. Here we study the correction strategies of the motor system in response to an unexpected frictional demand. The motor commands to the mononeuron pool are estimated by a novel technique combining behavioral recordings and neuromuscular modelling. We first propose a mathematical model incorporating muscles, hand mechanics, and the action of lifting an object. A simple control system sends motor commands to and receives sensory signals from the model. We identify three factors influencing the efficiency of the correction: the time development of the motor command, the delay between the onset of the grip and load forces (GF-LF-delay), and how fast the lift is performed. A sensitivity analysis describes how these factors affect the ability to prevent or stop slipping and suggests an efficient control strategy that prepares and corrects for an altered frictional condition. We then analyzed fingertip grip and load forces (GF and LF) and position data from 200 lifts made by five healthy subjects. The friction was occasionally reduced, forcing an increase of the GF to prevent the object being dropped. The data were then analyzed by feeding it through the inverted model. This provided an estimate of the motor commands to the motoneuron pool. As suggested by the sensitivity analysis the GF-LF-delay was indeed used by the subjects to prevent slip. In agreement with recordings from neurons in the primary motor cortex of the monkey, a sharp burst in the estimated GF motor command (NGF) efficiently arrested any slip. The estimated motor commands indicate a control system that uses a small set of corrective commands, which together with the GF-LF-delay form efficient correction strategies. The selection of a strategy depends on the amount of tactile information reporting unexpected friction and how long it takes to arrive. We believe that this technique of estimating the motor commands behind the fingertip forces during a precision grip lift can provide a powerful tool for the investigation of the central control of the motor system.


Subject(s)
Fingers , Hand Strength/physiology , Models, Biological , Motor Activity/physiology , Motor Cortex/physiology , Motor Neurons/physiology , Muscle, Skeletal/physiology , Adult , Female , Fingers/physiology , Friction , Humans , Lifting , Male , Middle Aged , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...