Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Protist ; 175(2): 126016, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350284

ABSTRACT

Although copper (Cu2+) is a micronutrient, the metal may be toxic if present in high concentrations in soil ecosystems and subsequently affect various organisms, ranging from microorganisms to earthworms. We performed a microcosm study with an array of Cu2+ concentrations, with a specific focus on Cercozoa, an important protozoan group in most soil food webs. Research on Cercozoa is still scarce in terms of both diversity and ecology; hence, to explore this group in more depth, we used high-throughput sequencing to detect Cu2+ induced community changes. Increased levels of Cu2+ caused a shift in the cercozoan community, and we observed decreased cercozoan relative abundance across the majority of orders, families and genera. Due to their key role in soil food webs, especially as bacterial predators and providers of nutrients to plants, the reduction of cercozoan abundance and diversity may seriously affect soil functionality. Our results indicate that the increase of Cu2+ concentrations in the soil could potentially have this effect and the consequences need exploration.


Subject(s)
Copper , Soil , Humans , Ecosystem , DNA Barcoding, Taxonomic , Metals , Soil Microbiology
2.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Article in English | MEDLINE | ID: mdl-37796894

ABSTRACT

Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism.


Subject(s)
Microbiota , Permafrost , Permafrost/microbiology , Soil , Bacteria/genetics , Carbon , RNA , Soil Microbiology
3.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Article in English | MEDLINE | ID: mdl-37553158

ABSTRACT

We investigated if activity of the pre-infective juveniles (J2s) of root-knot nematodes is linked to the recruitment of a specific microbiome on the nematode surface and/or to the composition of the surrounding microbiota. For this, we determined the J2 activity (active vs. non-motile, which referred to dead and immobile J2s) upon a 3-day incubation in soil suspensions and studied the composition of bacteria, protists, and fungi present on the nematode surface and in the suspensions using amplicon sequencing of the 16S/18S rRNA genes, and ITS region. We also amended suspensions with Pseudomonas protegens strain CHA0 to study its effects on J2 activity and microbial composition. The J2 activity was suppressed in soil suspensions, but increased when suspensions were amended with P. protegens CHA0. The active and non-motile J2s differed in the composition of surface-attached bacteria, which was altered by the presence of P. protegens CHA0 in the soil suspensions. The bacterial genera Algoriphagus, Pedobacter, and Bdellovibrio were enriched on active J2s and may have protected the J2s against antagonists. The incubation time appeared short for attachment of fungi and protists. Altogether, our study is a step forward in disentangling the complex nematode-microbe interactions in soil for more successful nematode control.


Subject(s)
Microbiota , Tylenchoidea , Animals , Soil , Suspensions , Tylenchoidea/genetics , Tylenchoidea/microbiology , Fungi/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
4.
Bioresour Technol ; 380: 129014, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028527

ABSTRACT

Composting with five levels of green waste and sewage sludge was compared to examine how feeding ratios affected composting performance with special focus on humification, and the underlying mechanisms. The results showed that the raw material ratio persistently affected compost nutrients and stability. Humification and mineralization were promoted by higher proportion of sewage sludge. Bacterial community composition and within-community relationships were also significantly affected by the raw material feeding ratio. Network analysis indicated that clusters 1 and 4 which dominated by Bacteroidetes, Proteobacteria, and Acidobacteria shown significantly positive correlation with humic acid concentration. Notably, the structural equational model and variance partitioning analysis demonstrated that bacterial community structure (explained 47.82% of the variation) mediated the effect of raw material feeding ratio on humification, and exceeded the effect of environmental factors (explained 19.30% of the variation) on humic acid formation. Accordingly, optimizing the composting raw material improves the composting performance.


Subject(s)
Composting , Humic Substances/analysis , Sewage/microbiology , Soil , Nutrients , Bacteria
5.
Plants (Basel) ; 9(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192219

ABSTRACT

To understand and manipulate the interactions between plants and microorganisms, sterile seeds are a necessity. The seed microbiome (inside and surface microorganisms) is unknown for most plant species and seed-borne microorganisms can persist and transfer to the seedling and rhizosphere, thereby obscuring the effects that purposely introduced microorganisms have on plants. This necessitates that these unidentified, seed-borne microorganisms are removed before seeds are used for studies on plant-microbiome interactions. Unfortunately, there is no single, standardized protocol for seed sterilization, hampering progress in experimental plant growth promotion and our study shows that commonly applied sterilization protocols for barley grains using H2O2, NaClO, and AgNO3 yielded insufficient sterilization. We therefore developed a sterilization protocol with AgNO3 by testing several concentrations of AgNO3 and added two additional steps: Soaking the grains in water before the sterilization and rinsing with salt water (1% (w/w) NaCl) after the sterilization. The most efficient sterilization protocol was to soak the grains, sterilize with 10% (w/w) AgNO3, and to rinse with salt water. By following those three steps, 97% of the grains had no culturable, viable microorganism after 21 days based on microscopic inspection. The protocol left small quantities of AgNO3 residue on the grain, maintained germination percentage similar to unsterilized grains, and plant biomass was unaltered. Hence, our protocol using AgNO3 can be used successfully for experiments on plant-microbiome interactions.

6.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-32009159

ABSTRACT

Recycling of wood ash from energy production may counteract soil acidification and return essential nutrients to soils. However, wood ash amendment affects soil physicochemical parameters that control composition and functional expression of the soil microbial community. Here, we applied total RNA sequencing to simultaneously assess the impact of wood ash amendment on the active soil microbial communities and the expression of functional genes from all microbial taxa. Wood ash significantly affected the taxonomic (rRNA) as well as functional (mRNA) profiles of both agricultural and forest soil. Increase in pH, electrical conductivity, dissolved organic carbon and phosphate were the most important physicochemical drivers for the observed changes. Wood ash amendment increased the relative abundance of the copiotrophic groups Chitinonophagaceae (Bacteroidetes) and Rhizobiales (Alphaproteobacteria) and resulted in higher expression of genes involved in metabolism and cell growth. Finally, total RNA sequencing allowed us to show that some groups of bacterial feeding protozoa increased concomitantly to the enhanced bacterial growth, which shows their pivotal role in the regulation of bacterial abundance in soil.


Subject(s)
Microbiota , Soil , Forests , Sequence Analysis, RNA , Soil Microbiology
7.
Sci Total Environ ; 713: 136581, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31951843

ABSTRACT

Wood ash, the by-product of biomass combustion to energy, can return important nutrients back to the soil and counteract acidification. However, the application of wood ash may affect the emission of greenhouse gases. Here, the effect of wood ash application on nitrous oxide (N2O) emissions from different soil environments were investigated in a 40 days incubation experiment comprising ten different soil types amended with five different wood ash concentrations (0, 3, 9, 20, and 54 t ash ha-1). The emitted N2O was measured continuously, and initial soil properties without ash application (carbon (C), nitrogen (N), ammonium (NH4+), nitrate (NO3-), and pH) and resulting soil properties (pH, NH4+, and NO3-) were measured prior and after the incubation period, respectively. The Random Forests (RF) model was used to identify which factors (initial and resulting soil properties, vegetation, management, wood ash doze, and respiration rate) were the most important to predict the development of emitted N2O after ash application. Wood ash either increased, decreased, or had no effect on the amount of emitted N2O depending on soil type and ash dose. The RF model identified the final resulting pH as the most important factor for the prediction of emitted N2O. The results suggest that wood ash can mitigate N2O emissions from soil, however, this effect depends on soil type where a mitigating effect of wood ash application was observed mainly in low pH soils with high soil organic matter whereas an increase in N2O emissions was observed in mineral soils that had previously received N fertilization. This study emphasises the importance of pH manipulation in regards to N2O emissions from soil.

8.
FEMS Microbiol Ecol ; 95(11)2019 11 01.
Article in English | MEDLINE | ID: mdl-31518408

ABSTRACT

As groundwater-fed waterworks clean their raw inlet water with sand filters, a variety of pro- and eukaryotic microbial communities develop on these filters. While several studies have targeted the prokaryotic sand filter communities, little is known about the eukaryotic communities, despite the obvious need for knowledge of microorganisms that get in contact with human drinking water. With a new general eukaryotic primer set (18S, V1-V3 region), we performed FLX-454 sequencing of material from 21 waterworks' sand filters varying in age (3-40 years) and geographical location on a 250 km east-west axis in Denmark, and put the data in context of their previously published prokaryotic communities. We find that filters vary highly in trophic complexity depending on age, from simple systems with bacteria and protozoa (3-6 years) to complex, mature systems with nematodes, rotifers and turbellarians as apex predators (40 years). Unlike the bacterial communities, the eukaryotic communities display a clear distance-decay relationship that predominates over environmental variations, indicating that the underlying aquifers feeding the filters harbor distinct eukaryotic communities with limited dispersal in between. Our findings have implications for waterworks' filter management, and offer a window down to the largely unexplored eukaryotic microbiology of groundwater aquifers.


Subject(s)
Eukaryota/isolation & purification , Filtration/instrumentation , Groundwater/microbiology , Microbiota , Bacteria/isolation & purification , DNA Primers , Denmark , Eukaryota/classification , Humans , Sand , Water Purification
9.
Environ Pollut ; 249: 886-893, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30965540

ABSTRACT

Wood ash recycling to forests is beneficial because it regains nutrients and prevents acidification, but wood ash application is restricted due to its cadmium (Cd) content. We question if Cd in wood ash represents a problem, since decreases in Cd bioavailability due to ash-induced pH changes may counteract increased total Cd concentration. We studied effects of wood ash (0, 3, 9 and 30 t ha-1) and lime (pH increase equivalent to the wood ash treatments) on growth and Cd uptake in Deschampsia flexuosa. After four months, we measured plant biomass and Cd accumulation, and extracted Cd from the soil using three different methods; HNO3 (total), EDTA (chelator-based) and NH4NO3 (salt-based). Wood ash and lime strongly stimulated plant growth. Cd concentration in the plant tissue decreased with wood ash and lime addition, and correlated positively with the NH4NO3 extractable fraction of Cd in the soil. In contrast, HNO3 and EDTA extracted more Cd with increased wood ash application. We conclude that wood ash amendment increases soil pH, total Cd concentration, nutrient levels and stimulates plant growth. However, it does not increase Cd accumulation in D. flexuosa, as pH-driven decreases in Cd bioavailability leads to reduced plant Cd uptake. Finally, soil bioavailable Cd is best determined using NH4NO3-extraction.


Subject(s)
Cadmium/analysis , Coal Ash/chemistry , Poaceae/drug effects , Soil Pollutants/analysis , Soil/chemistry , Wood/chemistry , Biological Availability , Biomass , Calcium Compounds/chemistry , Oxides/chemistry , Poaceae/chemistry , Poaceae/growth & development
10.
Ecotoxicol Environ Saf ; 172: 290-295, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30716663

ABSTRACT

Wood ash is a beneficial fertilizer and liming agent in nutrient depleted soils, but it also contains considerable amounts of cadmium (Cd), which can be toxic to organisms in the environment. Therefore, risk assessments regarding utilization of wood ash is required. Here, we studied how wood ash (applied in doses equivalent to 0, 3 and 6 t ha-1) and Cd (applied in doses of 0, 10, 150, 300, 600, 1200 and 2000 mg kg-1) affected growth of the soil nematode Caenorhabditis elegans. The treatments were combined in a full factorial design. Wood ash alone greatly stimulated both soil respiration and growth of C. elegans, whereas Cd alone had a toxic effect. However, unrealistically high Cd levels were needed to severely affect growth of C. elegans and soil respiration, especially soil respiration was very resilient to Cd amendment. Ash addition decreased Cd toxicity to C. elegans, with an EC50 value of 390 mg Cd kg-1 in the 3 t ash ha-1 treatment, and an increase of EC50 to 1894 mg Cd kg-1 in the 6 t ash ha-1 treatment. This is probably because ash increases the Cd sorption capacity of the soil, and thereby decreases the bio-availability of Cd. The results suggest that there is no acute toxic effect of Cd to nematodes associated with wood ash recycling; in fact, our results suggest that ash actually decrease Cd toxicity.


Subject(s)
Cadmium/toxicity , Caenorhabditis elegans/drug effects , Fertilizers , Soil Pollutants/toxicity , Animals , Biological Availability , Cadmium/chemistry , Soil/chemistry , Soil Pollutants/chemistry
11.
ISME J ; 13(5): 1345-1359, 2019 05.
Article in English | MEDLINE | ID: mdl-30692629

ABSTRACT

The active layer of soil overlaying permafrost in the Arctic is subjected to annual changes in temperature and soil chemistry, which we hypothesize to affect the overall soil microbial community. We investigated changes in soil microorganisms at different temperatures during warming and freezing of the active layer soil from Svalbard, Norway. Soil community data were obtained by direct shotgun sequencing of total extracted RNA. No changes in soil microbial communities were detected when warming from -10 to -2 °C or when freezing from -2 to -10 °C. In contrast, within a few days we observed changes when warming from -2 to +2 °C with a decrease in fungal rRNA and an increase in several OTUs belonging to Gemmatimonadetes, Bacteroidetes and Betaproteobacteria. Even more substantial changes occurred when incubating at 2 °C for 16 days, with declines in total fungal potential activity and decreases in oligotrophic members from Actinobacteria and Acidobacteria. Additionally, we detected an increase in transcriptome sequences of bacterial phyla Bacteriodetes, Firmicutes, Betaproteobacteria and Gammaproteobacteria-collectively presumed to be copiotrophic. Furthermore, we detected an increase in putative bacterivorous heterotrophic flagellates, likely due to predation upon the bacterial community via grazing. Although this grazing activity may explain relatively large changes in the bacterial community composition, no changes in total 16S rRNA gene copy number were observed and the total RNA level remained stable during the incubation. Together, these results are showing the first comprehensive ecological evaluation across prokaryotic and eukaryotic microbial communities on thawing and freezing of soil by application of the TotalRNA technique.


Subject(s)
Bacteria/isolation & purification , Eukaryota/isolation & purification , Permafrost/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Eukaryota/classification , Eukaryota/genetics , Eukaryota/metabolism , Freezing , Heterotrophic Processes , Microbiota , Norway , Permafrost/chemistry , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Svalbard
12.
Environ Pollut ; 242(Pt B): 1510-1517, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30144724

ABSTRACT

Small heterotrophic protists (flagellates and naked amoebae) are very abundant in soil and play a key role in maintaining soil services. Hence, knowledge on how xenobiotics affect these organisms is essential in ecosystem management. Cadmium (Cd) is an increasing environmental issue as both industrial deposition and recycling of heavy metal rich waste products have led to Cd enrichment of soils. Evaluation of toxicity of Cd to micro-organisms is often performed using a solution of pure Cd (e.g. CdCl) in liquid culture. This approach may be highly misleading as interactions between Cd and other substances, e.g. various ions or inherent soil components often strongly modify Cd toxicity. Hence, we compared the toxic effect of Cd to small heterotrophic protists in soil microcosms and liquid culture. We also evaluated how zinc (Zn) affects Cd toxicity, as Zn usually accompanies Cd in a ratio of c. 100:1, and is known to impede Cd toxicity. In the soil microcosms, we also monitored the primary food source of the protists, i.e. culturable bacteria, and used soil respiration as a proxy of soil functioning. Finally, we examined to what extent Cd actually sorbs to soil. We found 1) that c. 103 times more Cd was required to obtain the same effect in the soil microcosms compared to the liquid culture, 2) that soil sorption explains why Cd, even though highly toxic in aqueous solutions, has very limited effect when applied to soil, and 3) (very surprisingly) that in our experimental systems Zn was as toxic as Cd. Our study suggests that Cd toxicity to soil protists will be small because most Cd in soil will be sorbed to the soil matrix and because the Zn:Cd ratio of 100:1 in most substances, incl. pollutants, will mean that lethal Zn effects will occur before Cd reaches toxic levels.


Subject(s)
Cadmium/toxicity , Cercozoa/drug effects , Schizopyrenida/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Zinc/toxicity , Cadmium/analysis , Ecosystem , Environmental Exposure , Soil Pollutants/analysis , Zinc/analysis
13.
Sci Rep ; 8(1): 5711, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29632323

ABSTRACT

Here we show that a commercial blocking reagent (G2) based on modified eukaryotic DNA significantly improved DNA extraction efficiency. We subjected G2 to an inter-laboratory testing, where DNA was extracted from the same clay subsoil using the same batch of kits. The inter-laboratory extraction campaign revealed large variation among the participating laboratories, but the reagent increased the number of PCR-amplified16S rRNA genes recovered from biomass naturally present in the soils by one log unit. An extensive sequencing approach demonstrated that the blocking reagent was free of contaminating DNA, and may therefore also be used in metagenomics studies that require direct sequencing.


Subject(s)
DNA, Ribosomal/isolation & purification , RNA, Ribosomal, 16S/isolation & purification , Reagent Kits, Diagnostic/standards , Biomass , Clay , DNA Contamination , DNA, Ribosomal/genetics , Laboratories , Metagenomics , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
14.
FEMS Microbiol Rev ; 42(3): 293-323, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29447350

ABSTRACT

Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.


Subject(s)
Eukaryota/physiology , Research/trends , Soil/parasitology , Animals , Biodiversity , Food Chain
15.
Environ Pollut ; 224: 581-589, 2017 May.
Article in English | MEDLINE | ID: mdl-28245950

ABSTRACT

Application of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions. To examine this, we performed laboratory toxicity studies of the effects of wood-ash added to an agricultural soil and the organic horizon of a coniferous plantation soil with the detrivore soil collembolans Folsomia candida and Onychiurus yodai, the gamasid predaceous mite Hypoaspis aculeifer, and the enchytraeid worm Enchytraeus crypticus. We used ash concentrations spanning 0-75 g kg-1 soil. As ash increases pH we compared bioash effects with effects of calcium hydroxide, Ca(OH)2, the main liming component of ash. Only high ash concentrations above 15 g kg-1 agricultural soil or 17 t ha-1 had significant effects on the collembolans. The wood ash neither affected H. aculeifer nor E. crypticus. The estimated osmolalities of Ca(OH)2 and the wood ash were similar at the LC50 concentration level. We conclude that short-term chronic effects of wood ash differ among different soil types, and osmotic stress is the likely cause of effects while high pH and heavy metals is of minor importance.


Subject(s)
Arthropods/drug effects , Coal Ash/chemistry , Oligochaeta/drug effects , Soil Pollutants/analysis , Soil/chemistry , Wood/chemistry , Agriculture , Animals , Arthropods/physiology , Coal Ash/toxicity , Ecosystem , Ecotoxicology , Environmental Monitoring , Hydrogen-Ion Concentration , Metals, Heavy/chemistry , Metals, Heavy/toxicity , Oligochaeta/physiology , Reproduction/drug effects , Soil/standards , Soil Pollutants/toxicity
16.
ISME J ; 10(10): 2488-97, 2016 10.
Article in English | MEDLINE | ID: mdl-26953604

ABSTRACT

Cercozoa are abundant free-living soil protozoa and quantitatively important in soil food webs; yet, targeted high-throughput sequencing (HTS) has not yet been applied to this group. Here we describe the development of a targeted assay to explore Cercozoa using HTS, and we apply this assay to measure Cercozoan community response to drought in a Danish climate manipulation experiment (two sites exposed to artificial drought, two unexposed). Based on a comparison of the hypervariable regions of the 18S ribosomal DNA of 193 named Cercozoa, we concluded that the V4 region is the most suitable for group-specific diversity analysis. We then designed a set of highly specific primers (encompassing ~270 bp) for 454 sequencing. The primers captured all major cercozoan groups; and >95% of the obtained sequences were from Cercozoa. From 443 350 high-quality short reads (>300 bp), we recovered 1585 operational taxonomic units defined by >95% V4 sequence similarity. Taxonomic annotation by phylogeny enabled us to assign >95% of our reads to order level and ~85% to genus level despite the presence of a large, hitherto unknown diversity. Over 40% of the annotated sequences were assigned to Glissomonad genera, whereas the most common individually named genus was the euglyphid Trinema. Cercozoan diversity was largely resilient to drought, although we observed a community composition shift towards fewer testate amoebae.


Subject(s)
Biodiversity , Cercozoa/isolation & purification , Soil/parasitology , Cercozoa/classification , Cercozoa/genetics , DNA Primers/genetics , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing , Phylogeny
17.
PLoS One ; 10(6): e0128838, 2015.
Article in English | MEDLINE | ID: mdl-26076202

ABSTRACT

BAM (2,6-dichlorobenzamide) is a metabolite of the pesticide dichlobenil. Naturally occurring bacteria that can utilize BAM are rare. Often the compound cannot be degraded before it reaches the groundwater and therefore it poses a serious threat to drinking water supplies. The bacterial strain Aminobacter MSH1 is a BAM degrader and therefore a potential candidate to be amended to sand filters in waterworks to remediate BAM polluted drinking water. A common problem in bioremediation is that bacteria artificially introduced into new diverse environments often thrive poorly, which is even more unfortunate because biologically diverse environments may ensure a more complete decomposition. To test the bioaugmentative potential of MSH1, we used a serial dilution approach to construct microcosms with different biological diversity. Subsequently, we amended Aminobacter MSH1 to the microcosms in two final concentrations; i.e. 10(5) cells mL(-1) and 10(7) cells mL(-1). We anticipated that BAM degradation would be most efficient at "intermediate diversities" as low diversity would counteract decomposition because of incomplete decomposition of metabolites and high diversity would be detrimental because of eradication of Aminobacter MSH1. This hypothesis was only confirmed when Aminobacter MSH1 was amended in concentrations of 10(5) cells mL(-1). Our findings suggest that Aminobacter MSH1 is a very promising bioremediator at several diversity levels.


Subject(s)
Benzamides/metabolism , Construction Materials/microbiology , Phyllobacteriaceae/metabolism , Bacterial Load , Soil Microbiology
18.
PLoS One ; 10(5): e0126080, 2015.
Article in English | MEDLINE | ID: mdl-25938467

ABSTRACT

BACKGROUND AND METHODS: Assessing the effects of pesticide hazards on microbiological processes in the soil is currently based on analyses that provide limited insight into the ongoing processes. This study proposes a more comprehensive approach. The side effects of pesticides may appear as changes in the expression of specific microbial genes or as changes in diversity. To assess the impact of pesticides on gene expression, we focused on the amoA gene, which is involved in ammonia oxidation. We prepared soil microcosms and exposed them to dazomet, mancozeb or no pesticide. We hypothesized that the amount of amoA transcript decreases upon pesticide application, and to test this hypothesis, we used reverse-transcription qPCR. We also hypothesized that bacterial diversity is affected by pesticides. This hypothesis was investigated via 454 sequencing and diversity analysis of the 16S ribosomal RNA and RNA genes, representing the active and total soil bacterial communities, respectively. RESULTS AND CONCLUSION: Treatment with dazomet reduced both the bacterial and archaeal amoA transcript numbers by more than two log units and produced long-term effects for more than 28 days. Mancozeb also inhibited the numbers of amoA transcripts, but only transiently. The bacterial and archaeal amoA transcripts were both sensitive bioindicators of pesticide side effects. Additionally, the numbers of bacterial amoA transcripts correlated with nitrate production in N-amended microcosms. Dazomet reduced the total bacterial numbers by one log unit, but the population size was restored after twelve days. The diversity of the active soil bacteria also seemed to be re-established after twelve days. However, the total bacterial diversity as reflected in the 16S ribosomal RNA gene sequences was largely dominated by Firmicutes and Proteobacteria at day twelve, likely reflecting a halt in the growth of early opportunists and the re-establishment of a more diverse population. We observed no effects of mancozeb on diversity.


Subject(s)
Agriculture , Bacteria/genetics , Bacterial Proteins/genetics , Ecosystem , Gene Expression , Pesticides , Soil Microbiology , Soil/chemistry , Ammonia/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Biodiversity , Nitrates/metabolism , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Transcription, Genetic
19.
AoB Plants ; 72015 Apr 08.
Article in English | MEDLINE | ID: mdl-25854693

ABSTRACT

Introduction of exotic organisms that subsequently become invasive is considered a serious threat to global biodiversity, and both scientists and nature-conservationists attempt to find explanations and means to meet this challenge. This requires a thorough analysis of the invasion phenomenon in an evolutionary and ecological context; in the case of invasive plants, we must have a major focus on above-belowground interactions. Thus, we discuss different theories that have been proposed to explain the course of invasions through interactions between plants and soil organisms. Further, a thorough analysis of invasion must include a temporal context. Invasions will typically include an initial acute phase, where the invader expands its territory and a later chronic phase where equilibrium is re-established. Many studies fail to make this distinction, which is unfortunate as it makes it impossible to thoroughly understand the invasion of focus. Thus, we claim that invasions fall into two broad categories. Some invasions irreversibly change pools and pathways of matter and energy in the invaded system; even if the abundance of the invader is reduced or it is completely removed, the system will not return to its former state. We use earthworm invasion in North America as a particular conspicuous example of invasive species that irreversibly change ecosystems. However, invasions may also be reversible, where the exotic organism dominates the system for a period, but in the longer term it either disappears, declines or its negative impact decreases. If the fundamental ecosystem structure and flows of energy and matter have not been changed, the system will return to a state not principally different from the original.

20.
Environ Sci Technol ; 49(2): 839-46, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25522137

ABSTRACT

Rapid sand filtration is essential at most waterworks that treat anaerobic groundwater. Often the filtration depends on microbiological processes, but the microbial communities of the filters are largely unknown. We determined the prokaryotic community structures of 11 waterworks receiving groundwater from different geological settings by 16S rRNA gene-based 454 pyrosequencing and explored their relationships to filtration technology and raw water chemistry. Most of the variation in microbial diversity observed between different waterworks sand filters could be explained by the geochemistry of the inlet water. In addition, our findings suggested four features of particular interest: (1) Nitrospira dominated over Nitrobacter at all waterworks, suggesting that Nitrospira is a key nitrifying bacterium in groundwater-treating sand filters. (2) Hyphomicrobiaceae species were abundant at all waterworks, where they may be involved in manganese oxidation. (3) Six of 11 waterworks had significant concentrations of methane in their raw water and very high abundance of the methanotrophic Methylococcaceae. (4) The iron-oxidizing bacteria Gallionella was present at all waterworks suggesting that biological iron oxidation is occurring in addition to abiotic iron oxidation. Elucidation of key members of the microbial community in groundwater-treating sand filters has practical potential, for example, when methods are needed to improve filter function.


Subject(s)
Groundwater/analysis , Groundwater/microbiology , Water Pollutants/analysis , Water Purification/methods , Ammonia/chemistry , Bacteria/genetics , Carbon/chemistry , Filtration , Iron/chemistry , Manganese/chemistry , Methane/chemistry , Nitrobacter/genetics , RNA, Ribosomal, 16S/genetics , Silicon Dioxide/chemistry , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...