Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chronobiol Int ; 31(1): 27-36, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24079808

ABSTRACT

Humans come in different chronotypes: The phase of their sleep-wake cycle with respect to the phase of the external, sidereal cycle of night and day differs. Colloquially, the early chronotypes are addressed as "larks," the late ones as "owls." The human chronotype can be quantified in hours and minutes of local time by determining the median of the sleep phase. Demographically, early and late human chronotypes differ with respect to the stability of their rhythms and the prevalence of several widespread diseases and risk factors, such as depression, nicotine abuse, and others. Inbred mice are widely used in chronobiological research as model organisms, but up to now there was no way to chronotype them. We have developed a method to chronotype mice in hours and fractions of hours by measuring the median of activity (MoA) and have shown that different mouse strains have significantly different MoAs and, thus, chronotypes. We have further developed methods to estimate the stability of the behavioral rhythms and found that "late" mice have relatively instable rhythms. Our methods permit the use of inbred mice for investigations into the molecular and genetic background of the chronotype and the prevalence of risks and diseases that are associated with it.


Subject(s)
Circadian Rhythm , Models, Animal , Sleep/physiology , Animals , Crosses, Genetic , Female , Humans , Male , Melatonin/chemistry , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred Strains , Photoperiod , Risk Factors
2.
J Comp Neurol ; 466(3): 319-30, 2003 Nov 17.
Article in English | MEDLINE | ID: mdl-14556290

ABSTRACT

The central nervous system (CNS) of the chordate amphioxus (Branchiostoma lanceolatum) is divisible into a spinal cord and an anterior portion in some ways equivalent to the brain of craniates. The present study reports on this anterior portion, with respect to general topography, cytoarchitecture, and cells that give rise to descending supraspinal projections. The anterior portion of the CNS is located adjacent to the first four myomeres and rostral to the first giant cell of Rohde-it can be divided into several regions that differ with respect to their cytoarchitecture. The tip of the neural tube is formed by a small anterior vesicle; caudally, there is a much larger region that is intercalated between the anterior vesicle and the first cell of Rohde. This intercalated region, in turn, consists of three subdivisions: an anterior subdivision adjacent to myomere 1, an intermediate subdivision adjacent to myomere 2, and a posterior one adjacent to myomeres 3 and 4. After injections of tracers into the spinal cord a large number of cells were labeled in the intercalated region. The spinally projecting cells were not evenly distributed: their number was decreased in the center of the intermediate subdivision. These subdivisions, which have previously not been noted, may be aligned with the expression domains of regulatory genes (e.g., AmphiOtx, AmphiHox) in larval lancelets. In particular, the center of the intermediate subdivision may correspond to a "nonHox/nonOtx" domain in the CNS of the larva. A similar embryonic domain occurs in the brain of craniates in which it develops into the isthmus cerebri that separates mid- and hindbrain. A close structural and topographical inspection of the corresponding region of adult lancelets reveals, however, that this region is not the homolog of an isthmus, but a uniquely derived, autapomorphic feature of lancelets.


Subject(s)
Central Nervous System/growth & development , Chordata, Nonvertebrate/growth & development , Pyramidal Tracts/growth & development , Animals , Central Nervous System/cytology , Central Nervous System/embryology , Chordata, Nonvertebrate/cytology , Chordata, Nonvertebrate/embryology , Pyramidal Tracts/cytology , Pyramidal Tracts/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...