Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 141(15): 154113, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25338887

ABSTRACT

Computer simulations are an important tool for linking the behaviour of polymer materials to the properties of the constituent polymer chains. In simulations, one normally uses periodic boundary conditions to mimic a macroscopic system. For a cross-linked polymer network, this will impose restrictions on the motion of the polymer chains at the borders of the simulation cell. We present a new method for constructing a three-dimensional closed network without periodic boundaries by embedding the system onto the surface of a sphere in four dimensions. This method can also be used to construct finite-sized gel particles for simulating the swelling of particles in a surrounding solvent. The method is described in algorithmic detail to allow the incorporation of the method into different types of simulation programs. We also present the results of Brownian dynamics simulations, analyzing the end-to-end distribution, radial distribution function, and the pore size distribution for different volume fractions and for chains with varying stiffness.

2.
Proc Natl Acad Sci U S A ; 108(20): 8114-21, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21518898

ABSTRACT

This research announcement continues the study of the symplectic homology of Weinstein manifolds undertaken by the authors [Bourgeois F, Ekholm T, Eliashberg Y (2009) arXiv:0911.0026] where the symplectic homology, as a vector space, was expressed in terms of the Legendrian homology algebra of the attaching spheres of critical handles. Here, we express the product and Batalin-Vilkovisky operator of symplectic homology in that context.

3.
J Chem Phys ; 122(18): 184110, 2005 May 08.
Article in English | MEDLINE | ID: mdl-15918697

ABSTRACT

There is a rapidly growing interest in performing computer simulations in a closed space, avoiding periodic boundary conditions. To extend the range of potential systems to include also macromolecules, we describe an algorithm for computer simulations of polymer chain molecules on S3, a hypersphere in four dimensions. In particular, we show how to generate initial conformations with a bond angle distribution given by the persistence length of the chain and how to calculate the bending forces for a molecule moving on S3. Furthermore, we discuss how to describe the shape of a macromolecule on S3, by deriving the radius of gyration tensor in this non-Euclidean space. The results from both Monte Carlo and Brownian dynamics simulations in the infinite dilution limit show that the results on S3 and in R3 coincide, both with respect to the size and shape as well as for the diffusion coefficient. All data on S3 can also be described by master curves by suitable scaling by the corresponding values in R3. We thus show how to extend the use of spherical boundary conditions, which are most effective for calculating electrostatic forces, to polymer chain molecules, making it possible to perform simulations on S3 also for polyelectrolyte systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...