Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 102(1-1): 012132, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794906

ABSTRACT

The spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is exactly solved in a magnetic field within the framework of the generalized star-triangle transformation and the method of exact recursion relations. The generalized star-triangle transformation establishes an exact mapping correspondence with the effective spin-1/2 Ising model on a triangular Husimi lattice with a temperature-dependent field, pair and triplet interactions, which is subsequently rigorously treated by making use of exact recursion relations. The ground-state phase diagram of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice, which bears a close resemblance with a triangulated kagomé lattice, involves, in total, two classical and three quantum ground states manifested in respective low-temperature magnetization curves as intermediate plateaus at 1/9, 1/3, and 5/9 of the saturation magnetization. It is verified that the fractional magnetization plateaus of quantum nature have character of either dimerized or trimerized ground states. A low-temperature magnetization curve of the spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice resembling a triangulated kagome lattice may exhibit either no intermediate plateau, a single 1/3 plateau, a single 5/9 plateau, or a sequence of 1/9, 1/3, and 5/9 plateaus depending on a character and relative size of two considered coupling constants.

2.
Article in English | MEDLINE | ID: mdl-26066155

ABSTRACT

The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three interconnected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes upon increasing the coordination number of the underlying Husimi lattice.

SELECTION OF CITATIONS
SEARCH DETAIL
...