Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol ; 20(3): 370-8, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23521795

ABSTRACT

Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical HTS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.


Subject(s)
Antitubercular Agents/pharmacology , Antitubercular Agents/toxicity , Drug Discovery , Animals , Bayes Theorem , Chlorocebus aethiops , Drug Evaluation, Preclinical , Female , Inhibitory Concentration 50 , Macrophages/drug effects , Mice , Mycobacterium tuberculosis/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...