Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 19(3): 1222-1236, 2017 03.
Article in English | MEDLINE | ID: mdl-28028880

ABSTRACT

Metapopulation theory developed in terrestrial ecology provides applicable frameworks for interpreting the role of local and regional processes in shaping species distribution patterns. Yet, empirical testing of metapopulation models on microbial communities is essentially lacking. We determined regional bacterioplankton dynamics from monthly transect sampling in the Baltic Sea Proper using 16S rRNA gene sequencing. A strong positive trend was found between local relative abundance and occupancy of populations. Notably, the occupancy-frequency distributions were significantly bimodal with a satellite mode of rare endemic populations and a core mode of abundant cosmopolitan populations (e.g. Synechococcus, SAR11 and SAR86 clade members). Temporal changes in population distributions supported several theoretical frameworks. Still, bimodality was found among bacterioplankton communities across the entire Baltic Sea, and was also frequent in globally distributed datasets. Datasets spanning waters with widely different physicochemical characteristics or environmental gradients typically lacked significant bimodal patterns. When such datasets were divided into subsets with coherent environmental conditions, bimodal patterns emerged, highlighting the importance of positive feedbacks between local abundance and occupancy within specific biomes. Thus, metapopulation theory applied to microbial biogeography can provide novel insights into the mechanisms governing shifts in biodiversity resulting from natural or anthropogenically induced changes in the environment.


Subject(s)
Bacteria/isolation & purification , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Baltic States , Biodiversity , Ecology , Ecosystem , RNA, Ribosomal, 16S/genetics , Seawater/chemistry
2.
Water Res ; 84: 120-6, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26218465

ABSTRACT

This study investigated the effects of aeration and/or vegetation in experimental constructed wetlands (CWs) as mesocosms on the removal of pollutants in oak wood leachate. Twelve outdoor wetland mesocosms, with randomized replicated treatment combinations of vegetation (Phragmites australis) and aeration was monitored during the second and third year after construction. The investigation included control tanks with no aeration and no vegetation. The parameters monitored were polyphenols (PPs), chemical oxygen demand (COD) and water colour. The reduction of COD after 28 days was approx. 50% and more than 50% of PPs, whereas only 40% of the water colour was removed. Aeration increased the effect of both COD and PP removal. The vegetation treatment had a small but significant effect on removal of COD. The vegetation + aeration treatment, as well as aeration alone, increased the removal efficiency of COD from 9.5 g m(-3) d(-1) in the control to 11 g m(-3) d(-1). The results suggest that CWs can be used to treat stormwater contaminated by oak wood leachate. Further, it is suggested that the main processes for removal of pollutants in the leachate occur in the open-water habitat and that the hydraulic retention time is more important for removal than aeration and vegetation related processes.


Subject(s)
Waste Disposal, Fluid/methods , Wetlands , Biological Oxygen Demand Analysis , Poaceae/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...