Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(50): e2115328119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36469776

ABSTRACT

Cancer mortality is exacerbated by late-stage diagnosis. Liquid biopsies based on genomic biomarkers can noninvasively diagnose cancers. However, validation studies have reported ~10% sensitivity to detect stage I cancer in a screening population and specific types, such as brain or genitourinary tumors, remain undetectable. We investigated urine and plasma free glycosaminoglycan profiles (GAGomes) as tumor metabolism biomarkers for multi-cancer early detection (MCED) of 14 cancer types using 2,064 samples from 1,260 cancer or healthy subjects. We observed widespread cancer-specific changes in biofluidic GAGomes recapitulated in an in vivo cancer progression model. We developed three machine learning models based on urine (Nurine = 220 cancer vs. 360 healthy) and plasma (Nplasma = 517 vs. 425) GAGomes that can detect any cancer with an area under the receiver operating characteristic curve of 0.83-0.93 with up to 62% sensitivity to stage I disease at 95% specificity. Undetected patients had a 39 to 50% lower risk of death. GAGomes predicted the putative cancer location with 89% accuracy. In a validation study on a screening-like population requiring ≥ 99% specificity, combined GAGomes predicted any cancer type with poor prognosis within 18 months with 43% sensitivity (21% in stage I; N = 121 and 49 cases). Overall, GAGomes appeared to be powerful MCED metabolic biomarkers, potentially doubling the number of stage I cancers detectable using genomic biomarkers.


Subject(s)
Glycosaminoglycans , Neoplasms , Humans , Biomarkers, Tumor/genetics , Liquid Biopsy , Early Detection of Cancer , Neoplasms/diagnosis
2.
Am J Pathol ; 191(11): 2023-2038, 2021 11.
Article in English | MEDLINE | ID: mdl-34400131

ABSTRACT

Angiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. This limited effect may be explained by an additional, less vascular endothelial growth factor-driven form of angiogenesis known as intussusceptive angiogenesis. The importance of intussusceptive angiogenesis in human tumors is not known. Epifluorescence and confocal microscopy was used to visualize intravascular pillars, the hallmark structure of intussusceptive angiogenesis, in tumors. Human malignant melanoma metastases, patient-derived melanoma xenografts in mice (PDX), and genetically engineered v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-induced, phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)-deficient (BPT) mice (BrafCA/+Ptenf/fTyr-Cre+/0-mice) were analyzed for pillars. Gene expression in human melanoma metastases and PDXs was analyzed by RNA sequencing. Matrix metalloproteinase 9 (MMP9) protein expression and T-cell and macrophage infiltration in tumor sections were determined with multiplex immunostaining. Intravascular pillars were detected in human metastases but rarely in PDXs and not in BPT mice. The expression of MMP9 mRNA was higher in human metastases compared with PDXs. High expression of MMP9 protein as well as infiltration of macrophages and T-cells were detected in proximity to intravascular pillars. MMP inhibition blocked formation of pillars, but not tubes or tip cells, in vitro. In conclusion, intussusceptive angiogenesis may contribute to the growth of human melanoma metastases. MMP inhibition blocked pillar formation in vitro and should be further investigated as a potential anti-angiogenic drug target in metastatic melanoma.


Subject(s)
Melanoma/pathology , Neovascularization, Pathologic/pathology , Skin Neoplasms/pathology , Aged , Aged, 80 and over , Animals , Female , Heterografts , Humans , Male , Matrix Metalloproteinase 9/metabolism , Melanoma/metabolism , Mice , Middle Aged , Neovascularization, Pathologic/metabolism , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
3.
Eur Heart J ; 42(43): 4481-4492, 2021 11 14.
Article in English | MEDLINE | ID: mdl-34297830

ABSTRACT

AIMS: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function. METHODS AND RESULTS: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to ß-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of ß1-adrenergic receptors. CONCLUSIONS: Our findings suggest that cardiac glycosphingolipids are required to maintain ß-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.


Subject(s)
Glucosyltransferases , Myocytes, Cardiac , Animals , Cardiomegaly , Glucosyltransferases/genetics , Mice , Receptors, Adrenergic
4.
PLoS One ; 15(9): e0239284, 2020.
Article in English | MEDLINE | ID: mdl-32941503

ABSTRACT

The Rho GTPase RAC1 is an important regulator of cytoskeletal dynamics, but the role of macrophage-specific RAC1 has not been explored during atherogenesis. We analyzed RAC1 expression in human carotid atherosclerotic plaques using immunofluorescence and found higher macrophage RAC1 expression in advanced plaques compared with intermediate human atherosclerotic plaques. We then produced mice with Rac1-deficient macrophages by breeding conditional floxed Rac1 mice (Rac1fl/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter (LC). Atherosclerosis was studied in vivo by infecting Rac1fl/fl and Rac1fl/fl/LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Rac1fl/fl/LC macrophages secreted lower levels of IL-6 and TNF-α and exhibited reduced foam cell formation and lipid uptake. The deficiency of Rac1 in macrophages reduced the size of aortic atherosclerotic plaques in AdPCSK9-infected Rac1fl/fl/LC mice. Compare with controls, intima/media ratios, the size of necrotic cores, and numbers of CD68-positive macrophages in atherosclerotic plaques were reduced in Rac1-deficient mice. Moreover, we found that RAC1 interacts with actin-binding filamin A. Macrophages expressed increased RAC1 levels in advanced human atherosclerosis. Genetic inactivation of RAC1 impaired macrophage function and reduced atherosclerosis in mice, suggesting that drugs targeting RAC1 may be useful in the treatment of atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Macrophages/metabolism , Neuropeptides/genetics , rac1 GTP-Binding Protein/genetics , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL , Neuropeptides/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , rac1 GTP-Binding Protein/metabolism
5.
Sci Rep ; 9(1): 6909, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061399

ABSTRACT

Myocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage. A recent report shows that cardiac overexpression of Plin2 result in massive myocardial steatosis suggesting that Plin2 stabilizes LDs. In this study, we hypothesized that deficiency in Plin2 would result in reduced myocardial lipid storage. In contrast to our hypothesis, we found increased accumulation of triglycerides in hearts, and specifically in cardiomyocytes, from Plin2-/- mice. Although Plin2-/- mice had markedly enhanced lipid levels in the heart, they had normal heart function under baseline conditions and under mild stress. However, after an induced myocardial infarction, stroke volume and cardiac output were reduced in Plin2-/- mice compared with Plin2+/+ mice. We further demonstrated that the increased triglyceride accumulation in Plin2-deficient hearts was caused by altered lipophagy. Together, our data show that Plin2 is important for proper hydrolysis of LDs.


Subject(s)
Autophagy , Lipid Metabolism , Myocardium/cytology , Myocardium/metabolism , Perilipin-2/deficiency , Animals , Cell Respiration , Heart/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Triglycerides/metabolism
6.
Int J Mol Sci ; 20(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30986904

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in western countries. Despite the high prevalence of NAFLD, the underlying biology of the disease progression is not clear, and there are no approved drugs to treat non-alcoholic steatohepatitis (NASH), the most advanced form of the disease. Thus, there is an urgent need for developing advanced in vitro human cellular systems to study disease mechanisms and drug responses. We attempted to create an organoid system genetically predisposed to NAFLD and to induce steatosis and fibrosis in it by adding free fatty acids. We used multilineage 3D spheroids composed by hepatocytes (HepG2) and hepatic stellate cells (LX-2) with a physiological ratio (24:1). HepG2 and LX-2 cells are homozygotes for the PNPLA3 I148M sequence variant, the strongest genetic determinant of NAFLD. We demonstrate that hepatic stellate cells facilitate the compactness of 3D spheroids. Then, we show that the spheroids develop accumulations of fat and collagen upon exposure to free fatty acids. Finally, this accumulation was rescued by incubating spheroids with liraglutide or elafibranor, drugs that are in clinical trials for the treatment of NASH. In conclusion, we have established a simple, easy to handle, in vitro model of genetically induced NAFLD consisting of multilineage 3D spheroids. This tool may be used to understand molecular mechanisms involved in the early stages of fibrogenesis induced by lipid accumulation. Moreover, it may be used to identify new compounds to treat NASH using high-throughput drug screening.


Subject(s)
Cell Lineage , Liver Cirrhosis/pathology , Models, Biological , Spheroids, Cellular/pathology , Apolipoproteins B/metabolism , Chalcones/pharmacology , Coculture Techniques , Collagen Type I/metabolism , Fatty Acids/metabolism , Hep G2 Cells , Humans , Liraglutide/pharmacology , Liver Cirrhosis/prevention & control , Propionates/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
7.
Circulation ; 140(1): 67-79, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31014088

ABSTRACT

BACKGROUND: The actin-binding protein FLNA (filamin A) regulates signal transduction important for cell locomotion, but the role of macrophage-specific FLNA during atherogenesis has not been explored. METHODS: We analyzed FLNA expression in human carotid atherosclerotic plaques by immunofluorescence. We also produced mice with Flna-deficient macrophages by breeding conditional Flna-knockout mice ( Flna o/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter ( LC). Atherosclerosis in vivo was studied by transplanting bone marrow from male Flna o/fl/ LC mice to atherogenic low-density lipoprotein receptor-deficient ( Ldlr-/-) mice; and by infecting Flna o/fl and Flna o/fl/ LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Furthermore, C57BL/6 mice were infected with AdPCSK9 and then treated with the calpain inhibitor calpeptin to inhibit FLNA cleavage. RESULTS: We found that macrophage FLNA expression was higher in advanced than in intermediate human atherosclerotic plaques. Flna o/fl/ LC macrophages proliferated and migrated less than controls; expressed lower levels of phosphorylated AKT and ERK1/2; exhibited reduced foam cell formation and lipid uptake; and excreted more lipids. The deficiency of Flna in macrophages markedly reduced the size of aortic atherosclerotic plaques in both Ldlr-/-BMT: Flnao/fl/LC and AdPCSK9-infected Flna o/fl/ LC mice. Intima/media ratios and numbers of CD68-positive macrophages in atherosclerotic plaques were lower in Flna-deficient mice than in control mice. Moreover, we found that STAT3 interacts with a calpain-cleaved carboxyl-terminal fragment of FLNA. Inhibiting calpain-mediated FLNA cleavage with calpeptin in macrophages reduced nuclear levels of phosphorylated STAT3, interleukin 6 secretion, foam cell formation, and lipid uptake. Finally, calpeptin treatment reduced the size of atherosclerotic plaques in C57BL/6 mice infected with AdPCSK9. CONCLUSIONS: Genetic inactivation of Flna and chemical inhibition of calpain-dependent cleavage of FLNA impaired macrophage signaling and function, and reduced atherosclerosis in mice, suggesting that drugs targeting FLNA may be useful in the treatment of atherosclerosis.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/metabolism , Filamins/deficiency , Filamins/genetics , Gene Targeting/methods , Macrophage Activation/physiology , Animals , Atherosclerosis/pathology , Cells, Cultured , Filamins/antagonists & inhibitors , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
PLoS One ; 12(6): e0178877, 2017.
Article in English | MEDLINE | ID: mdl-28570702

ABSTRACT

OBJECTIVE: Severe hypoxia develops close to the necrotic core of advanced human atherosclerotic plaques, but the energy metabolic consequences of this hypoxia are not known. In animal models, plaque hypoxia is also associated with depletion of glucose and ATP. ATP depletion may impair healing of plaques and promote necrotic core expansion. To investigate if ATP depletion is present in human plaques, we analyzed the distribution of energy metabolites (ATP, glucose, glycogen and lactate) in intermediate and advanced human plaques. APPROACH AND RESULTS: Snap frozen carotid endarterectomies from 6 symptomatic patients were analyzed. Each endarterectomy included a large plaque ranging from the common carotid artery (CCA) to the internal carotid artery (ICA). ATP, glucose, and glycogen concentrations were lower in advanced (ICA) compared to intermediate plaques (CCA), whereas lactate concentrations were higher. The lowest concentrations of ATP, glucose and glycogen were detected in the perinecrotic zone of advanced plaques. CONCLUSIONS: Our study demonstrates severe ATP depletion and glucose deficiency in the perinecrotic zone of human advanced atherosclerotic plaques. ATP depletion may impair healing of plaques and promote disease progression.


Subject(s)
Adenosine Triphosphate/metabolism , Glucose/metabolism , Plaque, Atherosclerotic/metabolism , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
9.
PLoS One ; 10(6): e0130898, 2015.
Article in English | MEDLINE | ID: mdl-26098110

ABSTRACT

OBJECTIVE: The first objective was to investigate if intracellular and extracellular levels of reactive oxygen species (ROS) within the mouse aorta increase before or after diet-induced lesion formation. The second objective was to investigate if intracellular and extracellular ROS correlates to cell composition in atherosclerotic lesions. The third objective was to investigate if intracellular and extracellular ROS levels within established atherosclerotic lesions can be reduced by lipid lowering by diet or atorvastatin. APPROACH AND RESULTS: To address our objectives, we established a new imaging technique to visualize and quantify intracellular and extracellular ROS levels within intact mouse aortas ex vivo. Using this technique, we found that intracellular, but not extracellular, ROS levels increased prior to lesion formation in mouse aortas. Both intracellular and extracellular ROS levels were increased in advanced lesions. Intracellular ROS correlated with lesion content of macrophages. Extracellular ROS correlated with lesion content of smooth muscle cells. The high levels of ROS in advanced lesions were reduced by 5 days high dose atorvastatin treatment but not by lipid lowering by diet. Atorvastatin treatment did not affect lesion inflammation (aortic arch mRNA levels of CXCL 1, ICAM-1, MCP-1, TNF-α, VCAM, IL-6, and IL-1ß) or cellular composition (smooth muscle cell, macrophage, and T-cell content). CONCLUSIONS: Aortic levels of intracellular ROS increase prior to lesion formation and may be important in initiation of atherosclerosis. Our results suggest that within lesions, macrophages produce mainly intracellular ROS whereas smooth muscle cells produce extracellular ROS. Short term atorvastatin treatment, but not lipid lowering by diet, decreases ROS levels within established advanced lesions; this may help explain the lesion stabilizing and anti-inflammatory effects of long term statin treatment.


Subject(s)
Aorta/metabolism , Atorvastatin/pharmacology , Coronary Artery Disease/pathology , Reactive Oxygen Species/metabolism , Analysis of Variance , Animals , Aorta/pathology , Apolipoproteins E/genetics , Benzimidazoles , Diet, Fat-Restricted , Female , Lipids/blood , Luminescent Measurements , Mice , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction
10.
J Biophotonics ; 5(4): 336-44, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22134948

ABSTRACT

The artery wall may develop energy depletion due to insufficient nutritional supply. However, until recently it has not been possible to validate this hypothesis because no available technology has allowed assessment of energy metabolism with sufficient spatial resolution. We use high resolution bioluminescence metabolic imaging to study energy metabolism in two mechanistically different vascular pathologies: patent ductus arteriosus and atherosclerosis. Physiological energy depletion in postnatally constricting ductus arteriosus promotes permanent closure. Insufficient ductus energy depletion, common in preterm infants, is associated with persistent patent ductus arteriosus, a condition with significantly increased morbidity and mortality. In contrast, in atherosclerosis, energy depletion in the macrophage-rich lesion core promotes cell death contributing to lesion instability and disease progression.


Subject(s)
Atherosclerosis/metabolism , Ductus Arteriosus, Patent/metabolism , Energy Metabolism , Luminescent Measurements/methods , Adenosine Triphosphate/metabolism , Animals , Arteries/metabolism , Ductus Arteriosus, Patent/complications , Glucose/metabolism , Glycogen/metabolism , Humans , Infant , Lactic Acid/metabolism , Premature Birth/metabolism , Pyruvic Acid/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...