Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 14(9)2018 09 26.
Article in English | MEDLINE | ID: mdl-30258029

ABSTRACT

In toad hopping, the hindlimbs generate the propulsive force for take-off while the forelimbs resist the impact forces associated with landing. Preparing to perform a safe landing, in which impact forces are managed appropriately, likely involves the integration of multiple types of sensory feedback. In toads, vestibular and/or proprioceptive feedback is critical for coordinated landing; however, the role of vision remains unclear. To clarify this, we compare pre-landing forelimb muscle activation patterns before and after removing vision. Specifically, we recorded EMG activity from two antagonistic forelimb muscles, the anconeus and coracoradialis, which demonstrate distance-dependent onset timing and recruitment intensity, respectively. Toads were first recorded hopping normally and then again after their optic nerves were severed to remove visual feedback. When blind, toads exhibited hop kinematics and pre-landing muscle activity similar to when sighted. However, distance-dependent relationships for muscle activity patterns were more variable, if present at all. This study demonstrates that blind toads are still able to perform coordinated landings, reinforcing the importance of proprioceptive and/or vestibular feedback during hopping. But the increased variability in distance-dependent activity patterns indicates that vision is more responsible for fine-tuning the motor control strategy for landing.


Subject(s)
Bufo marinus/physiology , Feedback, Sensory/physiology , Locomotion/physiology , Visual Perception/physiology , Animals , Biomechanical Phenomena , Electromyography , Forelimb/physiology , Muscle, Skeletal/physiology
2.
J Exp Biol ; 218(Pt 15): 2410-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26026036

ABSTRACT

Coordinated landing requires preparation. Muscles in the limbs important for decelerating the body should be activated prior to impact so that joints may be stiffened and limbs stabilized during landing. Moreover, because landings vary in impact force and timing, muscle recruitment patterns should be modulated accordingly. In toads, which land using their forelimbs, previous work has demonstrated such modulation in muscles acting at the elbow, but not at the shoulder. In this study, we used electromyography and high-speed video to test the hypothesis that antagonistic muscles acting at the wrists of toads are activated in advance of impact, and that these activation patterns are tuned to the timing and force of impact. We recorded from two wrist extensors: extensor carpi ulnaris (ECU) and extensor digitorum communis longus (EDCL), and two wrist flexors: flexor carpi ulnaris (FCU) and palmaris longus (PL). Each muscle was recorded in 4-5 animals (≥15 hops per animal). In all muscles, activation intensity was consistently greatest shortly before impact, suggesting the importance of these muscles during landing. Pre-landing recruitment intensity regularly increased with aerial phase duration (i.e. hop distance) in all muscles except PL. In addition, onset timing in both wrist flexors was also modulated with hop distance, with later onset times being associated with longer hops. Thus, activation patterns in major flexors and extensors of the wrist are tuned to hop distance with respect to recruitment intensity, onset timing or both.


Subject(s)
Bufo marinus/physiology , Locomotion/physiology , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Electromyography/methods , Forelimb/physiology , Joints/physiology
3.
J Morphol ; 275(1): 100-10, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24142882

ABSTRACT

In terrestrial vertebrates, the pelvic girdle can reliably predict locomotor mode. Because of the diminished gravitational effects on positively buoyant bony fish, the same relationship does not appear to exist. However, within the negatively buoyant elasmobranch fishes, benthic batoids employ pelvic fin bottom-walking and punting as primary or supplementary forms of locomotion. Therefore, in this study, we employed geometric and linear morphometrics to investigate if their pelvic girdles exhibit shape characteristics similar to those of sprawling terrestrial vertebrates. We tested for correlates of pelvic girdle shape with 1) Order, 2) Family, 3) Swim Mode, and/or 4) Punt Mode. Landmarks and semilandmarks were placed along outlines of dorsal views of 61 batoid pelvic girdles (3/3 orders, 10/13 families, 35/72 genera). The first three relative warps explained 88.45% of the variation among individuals (P < 0.01%). Only Order and Punt Mode contained groups that were all significantly different from each other (P < 0.01%). Discriminant function analyses indicated that the majority of variation within each category was due to differences in extension of lateral and prepelvic processes and puboischiac bar angle. Over 60% of the original specimens and 55% of the cross-validated specimens were correctly classified. The neutral angle of the propterygium, which articulates with the pelvic girdle, was significantly different among punt modes, whereas only pectoral fin oscillators had differently shaped pelvic girdles when compared with batoids that perform other swimming modes (P < 0.01). Pelvic girdles of batoids vary greatly, and therefore, likely function in ways not previously described in teleost fishes. This study illustrates that pelvic girdle shape is a good predictor of punt mode, some forms of swimming mode, and a species' Order. Such correlation between locomotor style and pelvic girdle shape provides evidence for the convergent evolution of morphological features that support both sprawled-gait terrestrial walking and aquatic bottom-walking.


Subject(s)
Biological Evolution , Fishes/anatomy & histology , Fishes/physiology , Pelvis/anatomy & histology , Animal Fins , Animals , Fishes/classification , Gait , Locomotion , Pelvis/physiology , Phylogeny , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...