Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 621: 24-30, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28389298

ABSTRACT

Protein kinase C (PKC) isozymes modulate voltage-gated calcium (Cav) currents through Cav2.2 and Cav2.3 channels by targeting serine/threonine (Ser/Thr) phosphorylation sites of Cavα1 subunits. Stimulatory (Thr-422, Ser-2108 and Ser-2132) and inhibitory (Ser-425) sites were identified in the Cav2.2α1 subunits to PKCs ßII and ε. In the current study, we investigated if the homologous sites of Cav2.3α1 subunits (stimulatory: Thr-365, Ser-1995 and Ser-2011; inhibitory: Ser-369) behaved in similar manner. Several Ala and Asp mutants were constructed in Cav2.3α1 subunits in such a way that the Ser/Thr sites can be examined in isolation. These mutants or WT Cav2.3α1 along with auxiliary ß1b and α2/δ subunits were expressed in Xenopus oocytes and the effects of PKCs ßII and ε studied on the barium current (IBa). Among these sites, stimulatory Thr-365 and Ser-1995 and inhibitory Ser-369 behaved similar to their homologs in Cav2.2α1 subunits. Furthermore PKCs produced neither stimulation nor inhibition when stimulatory Thr-365 or Ser-1995 and inhibitory Ser-369 were present together. However, the PKCs potentiated the IBa when two stimulatory sites, Thr-365 and Ser-1995 were present together, thus overcoming the inhibitory effect of Ser-369. Taken together net PKC effect may be the difference between the responses of the stimulatory and inhibitory sites.


Subject(s)
Calcium Channels, N-Type/chemistry , Calcium Channels, N-Type/metabolism , Membrane Potentials/physiology , Oocytes/physiology , Protein Kinase C/chemistry , Protein Kinase C/metabolism , Animals , Binding Sites , Cells, Cultured , Enzyme Activation , Enzyme Inhibitors , Isoenzymes/chemistry , Isoenzymes/metabolism , Mutagenesis, Site-Directed , Protein Binding , Protein Subunits , Serine/chemistry , Serine/metabolism , Structure-Activity Relationship , Substrate Specificity , Threonine/chemistry , Threonine/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...