Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(11)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702076

ABSTRACT

Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.


Subject(s)
Aging , Glucocorticoids , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphatidate Phosphatase , Sarcopenia , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sarcopenia/metabolism , Sarcopenia/drug therapy , Sarcopenia/pathology , Sarcopenia/genetics , Mice , Aging/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Glucocorticoids/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Male , Disease Models, Animal , Female
2.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585940

ABSTRACT

Genetic variations in the glucocorticoid receptor (GR) gene NR3C1 can impact metabolism. The single nucleotide polymorphism (SNP) rs6190 (p.R23K) has been associated in humans with enhanced metabolic health, but the SNP mechanism of action remains completely unknown. We generated a transgenic knock-in mice genocopying this polymorphism to elucidate how the mutant GR impacts metabolism. Compared to non-mutant littermates, mutant mice showed increased muscle insulin sensitivity and strength on regular chow and high-fat diet, blunting the diet-induced adverse effects on weight gain and exercise intolerance. Overlay of RNA-seq and ChIP-seq profiling in skeletal muscle revealed increased transactivation of Foxc1 and Arid5A genes by the mutant GR. Using adeno-associated viruses for in vivo overexpression in muscle, we found that Foxc1 was sufficient to transcriptionally activate the insulin response pathway genes Insr and Irs1. In parallel, Arid5a was sufficient to transcriptionally repress the lipid uptake genes Cd36 and Fabp4, reducing muscle triacylglycerol accumulation. Collectively, our findings identify a muscle-autonomous epigenetic mechanism of action for the rs6190 SNP effect on metabolic homeostasis, while leveraging a human nuclear receptor coding variant to unveil Foxc1 and Arid5a as novel epigenetic regulators of muscle metabolism.

3.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37905062

ABSTRACT

Sarcopenia burdens the elderly population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are missing. The glucocorticoid prednisone remodels muscle metabolism based on frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone rescued muscle quality in aged 24-month-old mice to levels comparable to young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing PGC1alpha and its co-factor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1alpha, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed the myocyte-specific Lipin1 as non-redundant factor coaxing PGC1alpha upregulation to the stimulation of both oxidative and anabolic capacities. Our study unveils an aging-resistant druggable program in myocytes to coordinately rescue energy and mass in sarcopenia.

4.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187555

ABSTRACT

Circadian time of intake determines the cardioprotective outcome of glucocorticoids in normal and infarcted hearts. The cardiomyocyte-specific glucocorticoid receptor (GR) is genetically required to preserve normal heart function in the long-term. The GR co-factor KLF15 is a pleiotropic regulator of cardiac metabolism. However, the cardiomyocyte-autonomous metabolic targets of the GR-KLF15 concerted epigenetic action remain undefined. Here we report that circadian time of intake determines the activation of a transcriptional and functional glucose oxidation program in heart by the glucocorticoid prednisone with comparable magnitude between sexes. We overlayed transcriptomics, epigenomics and cardiomyocyte-specific inducible ablation of either GR or KLF15. Downstream of a light-phase prednisone stimulation in mice, we found that both factors are non-redundantly required in heart to transactivate the adiponectin receptor expression (Adipor1) and promote insulin-stimulated glucose uptake, as well as transactivate the mitochondrial pyruvate complex expression (Mpc1/2) and promote pyruvate oxidation. We then challenged this time-specific drug effect in obese diabetic db/db mice, where the heart shows insulin resistance and defective glucose oxidation. Opposite to dark-phase dosing, light-phase prednisone rescued glucose oxidation in db/db cardiomyocytes and diastolic function in db/db hearts towards control-like levels with sex-independent magnitude of effect. In summary, our study identifies novel cardiomyocyte-autonomous metabolic targets of the GR-KLF15 concerted program mediating the time-specific cardioprotective effects of glucocorticoids on cardiomyocyte glucose utilization.

5.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076959

ABSTRACT

The sarcomere regulates striated muscle contraction. This structure is composed of several myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibrosis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle genes in the myocardium will provide important information for understanding numerous cardiac pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomyopathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219 represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian heart regulates cardiomyocyte identity and myocardial contraction.


Subject(s)
DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Transcription Factors , Animals , Gene Expression Regulation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Muscle Proteins/genetics , Muscle Proteins/metabolism , Nucleosomes , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Front Oncol ; 11: 633233, 2021.
Article in English | MEDLINE | ID: mdl-33981601

ABSTRACT

Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4-the core component of the nucleosome remodeling and deacetylase (NuRD) complex-may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either 'deleterious', 'probably/possibly damaging' or as 'high/medium pathogenic'; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...