Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38639105

ABSTRACT

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Subject(s)
Hypertension, Pulmonary , Vascular Remodeling , Zinc Finger Protein GLI1 , Animals , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Mice , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Mice, Transgenic , Male , Humans , Hypoxia/metabolism , Hypoxia/physiopathology
2.
Am J Pathol ; 194(5): 656-672, 2024 May.
Article in English | MEDLINE | ID: mdl-38325552

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Injury , Animals , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Myofibroblasts/metabolism , Lung Injury/pathology , Proteomics , Lung/pathology , Fibrosis , Hypoxia/pathology , Idiopathic Pulmonary Fibrosis/pathology , Bleomycin/toxicity , Regeneration , Intracellular Signaling Peptides and Proteins
4.
Eur Respir J ; 62(5)2023 11.
Article in English | MEDLINE | ID: mdl-37884305

ABSTRACT

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Subject(s)
Cigarette Smoking , Emphysema , Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Pulmonary Disease, Chronic Obstructive/drug therapy , Hypertension, Pulmonary/complications , Pancreatic Elastase/adverse effects , Pancreatic Elastase/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/therapeutic use , Cigarette Smoking/adverse effects , Pulmonary Emphysema/etiology , Lung/metabolism , Emphysema/complications , Mice, Inbred C57BL
5.
Cell J ; 25(6): 372-382, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37434454

ABSTRACT

OBJECTIVE: Efficient production of functional and mature alveolar epithelial is a major challenge for developing any cell replacement therapy for lung degenerative diseases. The extracellular matrix (ECM) pro-vides a dynamic environment and mediates cellular responses during development and maintenance of tissue functions. The decellularized ECM (dECM) which retains its native-like structure and bio-chemical composition can provide the induction of embryonic stem cell (ESC) differentiation toward the tissue-specific lineages during in vitro culture. Therefore, the aim of this study was to evaluate the effect of sheep lung dECM-derived scaffold on differentiation and further maturation of ESC-derived lung progenitor cells. MATERIALS AND METHODS: This study was an experimental study. In the first step, a sheep lung was decellularized to achieve dECM scaffolds and hydrogels. Afterwards, the obtained dECM scaffold was evaluated for collagen and glycosaminoglycan contents, DNA quantification, and its ultrastructure. Next, the three experimental groups: i. Sheep lung dECM-derived scaffold, ii. Sheep lung dECM-derived hydrogel, and iii. Fibronectin-coated plates were compared in their abilities to induce further differentiation of human embryonic stem cells (hESCs)-derived definitive endoderm (DE) into lung progenitor cells. The comparison was evaluated by immuno-staining and real-time polymerase chain reaction (PCR) assessments. RESULTS: We found that the dECM-derived scaffold preserved its composition and native porous structures while lacking nuclei and intact cells. All experimental groups displayed lung progenitor cell differen-tiation as revealed by the RNA and protein expression of NKX2.1, P63 and CK5. DE cells differenti-ated on dECM-derived scaffold and dECMderived hydrogel showed significant upregulation of SOX9 gene expression, a marker of the distal airway epithelium. DE cells differentiated on the dECM-derived scaffold compared to the two other groups, showed enhanced expression of SFTPC (type 2 alveolar epithelial [AT2] cell marker), FOXJ1 (ciliated cell marker), and MUC5A (secretory cell marker) genes. CONCLUSION: Overall, our results suggest that dECM-derived scaffold improves the differentiation of DE cells towards lung alveolar progenitor cells in comparison with dECM-derived hydrogel and fibronectin-coated plates.

6.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37463440

ABSTRACT

Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Infant, Newborn , Humans , Lung/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Fibrosis , Regeneration , Mesoderm/pathology , Epithelial Cells/pathology
7.
Pol Arch Intern Med ; 133(7-8)2023 06 30.
Article in English | MEDLINE | ID: mdl-37387676

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and life­threatening interstitial lung disease of familial or sporadic onset. The incidence and prevalence of IPF range from 0.09 to 1.3 and from 0.33 to 4.51 per 10 000 people, respectively. IPF has a poor prognosis, and death usually occurs within 2 to 5 years following the diagnosis due to secondary respiratory failure. Currently, there are 2 drugs available to treat IPF, pirfenidone and nintedanib. Both only slow the disease progression and, in addition, have unfavorable safety profiles. IPF bears the histology of usual interstitial pneumonia, which is characterized by bronchiolization of distal airspaces, honeycombing, fibroblastic foci, and abnormal epithelial hyperplasia. In the last years, alterations in metabolic pathways, in particular those associated with fatty acid (FA) metabolism have been linked with the pathogenesis of lung fibrosis. Changes in FA profiles have been reported in lung tissue, plasma, and bronchoalveolar lavage fluid of IPF patients, and have been found to correlate with the disease progression and outcome. In addition, they have been associated with the development of a profibrotic phenotype of epithelial cells, macrophages, and fibroblasts / myofibroblasts contributing to their (trans)differentiation and production of the disease­relevant mediators. Furthermore, strategies focusing on the correction of FA profiles in experimental models of lung fibrosis brought advances in understanding tissue scarring processes and contributed to the transition of new molecules into clinical development. This review highlights the role of FAs and their metabolites in IPF and provides evidence for therapeutic potential of lipidome manipulations in the treatment of this disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung/pathology , Bronchoalveolar Lavage Fluid , Disease Progression
9.
Am J Respir Crit Care Med ; 207(3): 283-299, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36047984

ABSTRACT

Rationale: Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. Objectives: We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. Methods: We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition in vitro (AEC2 lines, primary murine/human AEC2s), ex vivo (human IPF-derived precision-cut lung slices), and in vivo (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). Measurements and Main Results: We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. In vivo pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Conclusions: Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pulmonary Surfactants , Humans , Mice , Animals , Surface-Active Agents , Lung , Alveolar Epithelial Cells , Bleomycin , Receptor, Notch1
10.
Cell Mol Life Sci ; 79(11): 581, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36333491

ABSTRACT

Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre-ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.


Subject(s)
Mesenchymal Stem Cells , Mice , Animals , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Lung/metabolism , Stem Cells , Epithelium/physiology , Epithelial Cells/metabolism
11.
Cells ; 11(16)2022 08 11.
Article in English | MEDLINE | ID: mdl-36010564

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a form of usual interstitial pneumonia (UIP), though its origin is unknown [...].


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Tomography, X-Ray Computed
12.
Cells ; 11(12)2022 06 20.
Article in English | MEDLINE | ID: mdl-35741102

ABSTRACT

Insulin-like growth factor (IGF) signaling controls the development and growth of many organs, including the lung. Loss of function of Igf1 or its receptor Igf1r impairs lung development and leads to neonatal respiratory distress in mice. Although many components of the IGF signaling pathway have shown to be dysregulated in idiopathic pulmonary fibrosis (IPF), the expression pattern of such components in different cellular compartments of the developing and/or fibrotic lung has been elusive. In this study, we provide a comprehensive transcriptional profile for such signaling components during embryonic lung development in mice, bleomycin-induced pulmonary fibrosis in mice and in human IPF lung explants. During late gestation, we found that Igf1 is upregulated in parallel to Igf1r downregulation in the lung mesenchyme. Lung tissues derived from bleomycin-treated mice and explanted IPF lungs revealed upregulation of IGF1 in parallel to downregulation of IGF1R, in addition to upregulation of several IGF binding proteins (IGFBPs) in lung fibrosis. Finally, treatment of IPF lung fibroblasts with recombinant IGF1 led to myogenic differentiation. Our data serve as a resource for the transcriptional profile of IGF signaling components and warrant further research on the involvement of this pathway in both lung development and pulmonary disease.


Subject(s)
Idiopathic Pulmonary Fibrosis , Animals , Bleomycin/pharmacology , Female , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Insulin-Like Growth Factor Binding Proteins , Lung/metabolism , Mice , Organogenesis , Pregnancy , Signal Transduction
13.
Cells ; 11(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35563831

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and often lethal interstitial lung disease of unknown aetiology. IPF is characterised by myofibroblast activation, tissue stiffening, and alveolar epithelium injury. As current IPF treatments fail to halt disease progression or induce regeneration, there is a pressing need for the development of novel therapeutic targets. In this regard, tri-dimensional (3D) models have rapidly emerged as powerful platforms for disease modelling, drug screening and discovery. In this review, we will touch on how 3D in vitro models such as hydrogels, precision-cut lung slices, and, more recently, lung organoids and lung-on-chip devices have been generated and/or modified to reveal distinct cellular and molecular signalling pathways activated during fibrotic processes. Markedly, we will address how these platforms could provide a better understanding of fibrosis pathophysiology and uncover effective treatment strategies for IPF patients.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Drug Evaluation, Preclinical , Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Lung Diseases, Interstitial/pathology , Myofibroblasts
14.
Cells ; 11(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-35053350

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal degenerative lung disease of unknown etiology. Although in its final stages it implicates, in a reactive manner, all lung cell types, the initial damage involves the alveolar epithelial compartment, in particular the alveolar epithelial type 2 cells (AEC2s). AEC2s serve dual progenitor and surfactant secreting functions, both of which are deeply impacted in IPF. Thus, we hypothesize that the size of the surfactant processing compartment, as measured by LysoTracker incorporation, allows the identification of different epithelial states in the IPF lung. Flow cytometry analysis of epithelial LysoTracker incorporation delineates two populations (Lysohigh and Lysolow) of AEC2s that behave in a compensatory manner during bleomycin injury and in the donor/IPF lung. Employing flow cytometry and transcriptomic analysis of cells isolated from donor and IPF lungs, we demonstrate that the Lysohigh population expresses all classical AEC2 markers and is drastically diminished in IPF. The Lysolow population, which is increased in proportion in IPF, co-expressed AEC2 and basal cell markers, resembling the phenotype of the previously identified intermediate AEC2 population in the IPF lung. In that regard, we provide an in-depth flow-cytometry characterization of LysoTracker uptake, HTII-280, proSP-C, mature SP-B, NGFR, KRT5, and CD24 expression in human lung epithelial cells. Combining functional analysis with extracellular and intracellular marker expression and transcriptomic analysis, we advance the current understanding of epithelial cell behavior and fate in lung fibrosis.


Subject(s)
Alveolar Epithelial Cells/metabolism , Amines/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Animals , Biomarkers/metabolism , Bleomycin , CD24 Antigen/metabolism , Epithelium/pathology , Gene Expression Profiling , Humans , Idiopathic Pulmonary Fibrosis/genetics , Keratin-5/metabolism , Mice, Inbred C57BL , Pulmonary Surfactant-Associated Proteins/metabolism , Receptors, Nerve Growth Factor/metabolism , Tissue Donors , Transcription, Genetic , Up-Regulation
15.
Article in English | MEDLINE | ID: mdl-34444333

ABSTRACT

Vascular remodeling is a prominent feature of pulmonary hypertension. This process involves increased muscularization of already muscularized vessels as well as neo-muscularization of non-muscularized vessels. The cell-of-origin of the newly formed vascular smooth muscle cells has been a subject of intense debate in recent years. Identifying these cells may have important clinical implications since it opens the door for attempts to therapeutically target the progenitor cells and/or reverse the differentiation of their progeny. In this context, the dominant model is that these cells derive from pre-existing smooth muscle cells that are activated in response to injury. In this mini review, we present the evidence that is in favor of this model and, at the same time, highlight other studies indicating that there are alternative cellular sources of vascular smooth muscle cells in pulmonary vascular remodeling.


Subject(s)
Hypertension, Pulmonary , Cell Differentiation , Humans , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Remodeling
17.
STAR Protoc ; 2(2): 100594, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34169288

ABSTRACT

Organoid models have been shown to be valuable tools for studying epithelial-mesenchymal crosstalk during biological and pathological settings. Our data identified ACTA2+ PDGFRα+ repair-supportive mesenchymal cells as an important component of the conducting airway niche. Here, we provide a detailed protocol for culturing airway organoids, or bronchiolospheres, which provide an assessment of the ability of mesenchymal cells to support club-cell growth. For complete details on the use and execution of this protocol, please refer to Moiseenko et al. (2020).


Subject(s)
Bronchioles/cytology , Animals , Coculture Techniques , Epithelial-Mesenchymal Transition , Mice , Naphthalenes/toxicity , Organoids/cytology , Tamoxifen/administration & dosage
18.
Front Cell Dev Biol ; 9: 671841, 2021.
Article in English | MEDLINE | ID: mdl-34055804

ABSTRACT

Fgf10 is a key gene during development, homeostasis and repair after injury. We previously reported a knock-in Fgf10 Cre-ERT2 line (with the Cre-ERT2 cassette inserted in frame with the start codon of exon 1), called thereafter Fgf10 Ki-v1, to target FGF10Pos cells. While this line allowed fairly efficient and specific labeling of FGF10Pos cells during the embryonic stage, it failed to target these cells after birth, particularly in the postnatal lung, which has been the focus of our research. We report here the generation and validation of a new knock-in Fgf10 Cre-ERT2 line (called thereafter Fgf10 Ki-v2) with the insertion of the expression cassette in frame with the stop codon of exon 3. Fgf10 Ki-v2/+ heterozygous mice exhibited comparable Fgf10 expression levels to wild type animals. However, a mismatch between Fgf10 and Cre expression levels was observed in Fgf10 Ki-v2/+ lungs. In addition, lung and limb agenesis were observed in homozygous embryos suggesting a loss of Fgf10 functional allele in Fgf10 Ki-v2 mice. Bioinformatic analysis shows that the 3'UTR, where the Cre-ERT2 cassette is inserted, contains numerous putative transcription factor binding sites. By crossing this line with tdTomato reporter line, we demonstrated that tdTomato expression faithfully recapitulated Fgf10 expression during development. Importantly, Fgf10 Ki-v2 mouse is capable of significantly targeting FGF10Pos cells in the adult lung. Therefore, despite the aforementioned limitations, this new Fgf10 Ki-v2 line opens the way for future mechanistic experiments involving the postnatal lung.

19.
Cell Rep ; 33(12): 108549, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357434

ABSTRACT

Tissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα+ cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs). This cell population, which we term "repair-supportive mesenchymal cells" (RSMCs), is distinct from conventional ASMCs, which have previously been shown to contribute to epithelial repair. Gene expression analysis on sorted lineage-labeled cells shows that RSMCs express low levels of ASMC markers, but high levels of the pro-regenerative marker Fgf10. Organoid co-cultures demonstrate an enhanced ability for RSMCs in supporting club-cell growth. Our study highlights the dynamics of mesenchymal cells in the airway niche and has implications for chronic airway-injury-associated diseases.


Subject(s)
Epithelial Cells/metabolism , Guided Tissue Regeneration/methods , Mesenchymal Stem Cells/metabolism , Animals , Epithelial Cells/pathology , Female , Humans , Mice
20.
EMBO J ; 39(21): e103476, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32985719

ABSTRACT

Organoids derived from mouse and human stem cells have recently emerged as a powerful tool to study organ development and disease. We here established a three-dimensional (3D) murine bronchioalveolar lung organoid (BALO) model that allows clonal expansion and self-organization of FACS-sorted bronchioalveolar stem cells (BASCs) upon co-culture with lung-resident mesenchymal cells. BALOs yield a highly branched 3D structure within 21 days of culture, mimicking the cellular composition of the bronchioalveolar compartment as defined by single-cell RNA sequencing and fluorescence as well as electron microscopic phenotyping. Additionally, BALOs support engraftment and maintenance of the cellular phenotype of injected tissue-resident macrophages. We also demonstrate that BALOs recapitulate lung developmental defects after knockdown of a critical regulatory gene, and permit modeling of viral infection. We conclude that the BALO model enables reconstruction of the epithelial-mesenchymal-myeloid unit of the distal lung, thereby opening numerous new avenues to study lung development, infection, and regenerative processes in vitro.


Subject(s)
Lung Diseases/pathology , Lung/growth & development , Organoids/growth & development , Stem Cells/physiology , Animals , Ataxin-1/genetics , Ataxin-1/metabolism , Cell Differentiation/genetics , Cells, Cultured , Endothelial Cells/cytology , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Epithelial Cells/cytology , Fibroblasts , Humans , Lung/cytology , Mesenchymal Stem Cells , Mice , Morphogenesis/genetics , Morphogenesis/physiology , Organogenesis/physiology , Organoids/cytology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/growth & development , RNA, Messenger/metabolism , Regeneration/genetics , Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...