Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 259(Pt 2): 129396, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219942

ABSTRACT

Recently, the concept of biodegradable and bioactive packaging and surface coating has become a trend. In this work, the bioactive films of chitosan were elaborated following the casting method. Contrary to the films containing the Cinnamomum zeylanicum Blume, Thymus satureioides Cosson, and Syzygium aromaticum essential oils (EOs) mixtures, the control film was thin, colorless, and showed high moisture content, swelling degree, and elongation at break. Concerning the physicochemical parameters, the incorporation of the EOs mixtures minimized the hydrophobicity of the material (θw < 65°) and modified randomly its surface free energy components (γ-; γ+; γLW). The theoretical prediction of Aspergillus sp. and Rhizopus sp. adherence to the chitosan-based films was relatively correlated to the experimental results (r = -0.601). The latter showed that 6.80 % and 19.02 % of the control film surface was covered by Aspergillus sp. and Rhizopus sp. spores, respectively. In contrast, no fungal adherence was noticed in the case of the film incorporating the triple EOs mixture. These promising results revealed that chitosan film containing C. zeylanicum, T. satureioides, and S. aromaticum EOs mixtures could be utilized as a surface coating or bioactive packaging in the food industry.


Subject(s)
Chitosan , Oils, Volatile , Oils, Volatile/chemistry , Chitosan/chemistry , Clove Oil , Aspergillus , Food Packaging/methods , Food Preservation
2.
World J Microbiol Biotechnol ; 39(12): 338, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37821792

ABSTRACT

Nowadays, the exploitation of biopolymers in the industrial sector has become a trend. Chitosan is considered one of the most investigated biopolymers due to its abundance and antibacterial, antifungal, and antibiofilm activities. In this work, chitosan was chemically extracted from shrimp shells. Solutions of HCl 1 M, NaOH 4 M, and NaOH 15 M were used for the demineralization, deproteinization, and deacetylation process, respectively. The utilized methods of characterization (FTIR, 1 H NMR, 13 C NMR, and SEC-MALS) revealed that the obtained chitosan has a moderate degree of deacetylation and low molecular weight (DDA = 74% and Mw = 72.14 kDa). The microdilution method and inoculation of solid medium were carried out to assess the antibiofilm action of chitosan against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus hirae, Escherichia coli, Rhizopus sp., and Aspergillus sp. which are known as foodborne microorganisms. Results showed that the produced chitosan at 1 g/L inhibits between 63.44 and 99.75% of the microbial biofilm depending on the tested strains. These promising results confirm the potential deployment of the obtained chitosan in the food industry as a replacement for synthetic antimicrobial agents.


Subject(s)
Anti-Infective Agents , Chitosan , Animals , Chitosan/pharmacology , Chitosan/chemistry , Sodium Hydroxide , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Fungi , Crustacea , Biopolymers , Biofilms , Microbial Sensitivity Tests
3.
Int J Biol Macromol ; 253(Pt 2): 126757, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678695

ABSTRACT

Marine algae are the most abundant resource in the marine environment and are still a promising source of bioactive compounds including hydrocolloids. This study contributes to the evaluation of the biological and biotechnological potentials of two water soluble polysaccharides, namely alginates (AHS) and fucoidan (FHS), extracted and purified from Halopteris scoparia, an abundant Tunisian brown macroalgae collected in Tunisia (Tabarka region). The total sugars, neutral monosaccharides, uronic acids, proteins, polyphenols, and sulfate groups contents were quantified for both fractions, as well as their functional groups and primary structural features by Fourier transform infrared spectroscopy, ionic and/or gas chromatography and nuclear magnetic resonance analyses. AHS and FHS showed significant anti-inflammatory (IC50 ≈ 1 mg/mL), anticoagulant (e.g., 27-61.7 for the activated partial thromboplastin time), antihyperglycemic (0.1-40 µg/mL) and anti-trypsin (IC50 ≈ 0.3-0.4 mg/mL) effects. FHS and a hydrolyzed fraction showed a very promising potential against herpes viruses (HSV-1) (IC50 < 28 µg/mL). Besides, AHS and two hydrolyzed fractions were able to stimulate the natural defenses of tomato seedlings, assessing their elicitor capacity, by increasing the activity of phenylalanine ammonia-lyase (66-422 %) but also significantly changing the polyphenol content in the leaves (121-243 %) and roots (30-104 %) of tomato plants.


Subject(s)
Phaeophyceae , Scoparia , Seaweed , Seaweed/chemistry , Water/metabolism , Polysaccharides/chemistry , Phaeophyceae/chemistry
4.
Mar Drugs ; 21(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37233495

ABSTRACT

Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.


Subject(s)
Phaeophyceae , Sargassum , Seaweed , Sargassum/chemistry , Alginates/chemistry , Lignin/pharmacology , Molecular Weight , Phaeophyceae/chemistry , Seaweed/chemistry , Oxidative Stress
5.
World J Microbiol Biotechnol ; 39(6): 146, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37014476

ABSTRACT

Recently, the scientific community is interested in the synthesis of biodegradable and bioactive packaging to replace oil-based ones. Therefore, the present study aims to elaborate an active and biodegradable material using chitosan (CS-film) combined with pelargonium, tea tree, marjoram, and thyme essential oils (EOs), and then evaluate their different properties and biological activities. The obtained data showed an augmentation in CS-film thickness and opacity following the addition of EOs ranging from 17 ± 3 to 42 ± 2 µm and from 1.53 ± 0.04 to 2.67 ± 0.09, respectively. Furthermore, a significant decrease in the water vapor transmission rate and moisture content parameters was recorded as regards the treated CS-films. On the other hand, the treatment with EOs engenders random modifications in the physicochemical and mechanical characteristics of the material. Concerning the biological activities, the treated CS-films scavenged around 60% of DPPH radical while the control CS-film exhibited a negligible antioxidant activity. Finally, the CS-films containing pelargonium and thyme EOs exhibited the strongest antibiofilm-forming activity against Escherichia coli, Enterococcus hirae, Staphylococcus aureus, and Pseudomonas aeruginosa with values of inhibition greater than 70%. These encouraging results verify the effectiveness of CS-films containing EOs such as pelargonium and thyme EOs as biodegradable and bioactive packaging.


Subject(s)
Chitosan , Oils, Volatile , Oils, Volatile/pharmacology , Chitosan/pharmacology , Chitosan/chemistry , Terpenes , Antioxidants/pharmacology
6.
World J Microbiol Biotechnol ; 39(3): 77, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36642748

ABSTRACT

In the food sector, the formation of biofilms as a result of microbial adherence on food-grade surfaces causes a major problem resulting in significant economic losses. Thereby, this work aimed to elaborate a biodegradable film using chitosan (CS-film) and reinforce its antiadhesion activity by incorporating pelargonium, clove, thyme, and cinnamon essential oils (EOs). Firstly, the antibacterial activity of these EOs alone and combined against four foodborne bacteria were analyzed by the microdilution method. Synergism was observed in the case of EOs combination. Secondly, the physicochemical characteristics and antiadhesion behavior of the CS-films were assessed by the contact angle method and ESEM, respectively. Results revealed that the EOs mixture treatment impacted considerably the physicochemical characteristics of the CS-film and reduced its qualitative and quantitative hydrophobicity. Moreover, the treated CS-film showed a strong antiadhesion behavior against Enterococcus hirae, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus with percentages of non-covered surface equal to 97.65 ± 1.43%, 98.76 ± 0.32%, 99.68 ± 0.28%, and 95.63 ± 1.32% respectively. From all these results, the CS-film treated with the mixture of EOs presents a great potential for application as surface coating and food packaging preventing microbial adhesion and thus, avoiding food contamination and spoilage.


Subject(s)
Chitosan , Oils, Volatile , Oils, Volatile/pharmacology , Chitosan/pharmacology , Food Microbiology , Bacteria , Anti-Bacterial Agents/pharmacology , Escherichia coli , Microbial Sensitivity Tests
7.
World J Microbiol Biotechnol ; 38(10): 179, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35941332

ABSTRACT

In the food industry, the development of microbial biofilms is a serious problem that leads to the contamination and deterioration of food products. To overcome that, our aim consists of searching for natural antimicrobial and non-toxic compounds (essential oils EOs), which might be used alone or adsorbed on natural biopolymer films (chitosan). In this work, the antioxidant activity of eight EOs was evaluated by DPPH radical-scavenging method while their antibacterial activity was determined by diffusion on agar and microdilution methods. Among all tested EOs, Eugenia caryophyllus, Cinnamomum zeylanicum Blume and Thymus satureioides Cosson showed high antioxidant activities at the concentration of 25.6 mg/mL, with respective values of (86.26%, 81.75%, and 76%), and strong antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Enterococcus hirae, with (MIC) values ≤ 4 µL/mL. At the concentration of 1 µL/mL, these EOs tested alone, showed values of antibiofilm-forming activity ranging from 79.43 to 99.33% and from 44.18 to 94.17%, when they are adsorbed onto chitosan film. These promising results confirm that these three EOs have a good potential for an eventual application in the food industry, as antimicrobial and antioxidant agents, or as active biodegradable food packaging, if combined with chitosan.


Subject(s)
Anti-Infective Agents , Chitosan , Oils, Volatile , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Biofilms , Chitosan/chemistry , Chitosan/pharmacology , Escherichia coli , Food Preservation , Microbial Sensitivity Tests , Oils, Volatile/pharmacology
8.
Plant Physiol Biochem ; 186: 99-106, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35835079

ABSTRACT

Given the increasing interest that is being paid to polysaccharides derived from algae as plant natural defense stimulators, the degree of sulfation of exopolysaccharides produced by P. sordidum for inducing defense responses in date palm vitroplants was investigated. Firstly, the culture parameters of P. sordidum were optimized to maximize the amount of sulfate in EPS using a Box-Behnken experimental design and the elicitor effects of two EPS which differ in the sulfation degrees were compared. Results demonstrated that the concentrations of NaCl, NaNO3 and MgSO4 set at 28, 0.54 and 16.31 g/L, respectively yielded the best sulfate contents. To elucidate defense-inducing activities in date palm vitroplants, EPS with the highest sulfate content (EPS1) were prepared for comparison with those obtained under standard conditions (EPS0). A fucoidan extracted from Cystoseira compressa was used as positive control and MgSO4 as negative control. Both EPS and the fucoidan displayed H2O2 accumulation and expression of PR1, SOD, PAL and WRKY genes. Interestingly, EPS1 was significantly more bioactive than EPS0 and the fucoidan suggesting that the elicitor activity is positively correlated with the sulfate groups content of this polysaccharide.


Subject(s)
Phaeophyceae , Phoeniceae , Porphyridium , Hydrogen Peroxide , Polysaccharides , Sulfates/pharmacology
9.
Mar Drugs ; 20(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35200618

ABSTRACT

In many African countries, the Bayoud is a common disease spread involving the fungus Fusarium oxusporum f. sp. albedinis (Foa). The induction of plant natural defenses through the use of seaweed polysaccharides to help plants against pathogens is currently a biological and ecological approach that is gaining more and more importance. In the present study, we used alginate, a natural polysaccharide extracted from a brown algae Bifurcaria bifurcata, to activate date palm defenses, which involve phenylalanine ammonia-lyase (PAL), a key enzyme of phenylpropanoid metabolism. The results obtained showed that at low concentration (1 g·L-1), alginate stimulated PAL activity in date palm roots 5 times more compared to the negative control (water-treated) after 24 h following treatment and 2.5 times more compared to the laminarin used as a positive stimulator of plant natural defenses (positive control of induction). Using qRT-PCR, the expression of a selection of genes involved in three different levels of defense mechanisms known to be involved in response to biotic stresses were investigated. The results showed that, generally, the PAL gene tested and the genes encoding enzymes involved in early oxidative events (SOD and LOX) were overexpressed in the alginate-treated plants compared to their levels in the positive and negative controls. POD and PR protein genes selected encoding ß-(1,3)-glucanases and chitinases in this study did not show any significant difference between treatments; suggesting that other genes encoding POD and PR proteins that were not selected may be involved. After 17 weeks following the inoculation of the plants with the pathogen Foa, treatment with alginate reduced the mortality rate by up to 80% compared to the rate in control plants (non-elicited) and plants pretreated with laminarin, which agrees with the induction of defense gene expression and the stimulation of natural defenses in date palm with alginate after 24 h. These results open promising prospects for the use of alginate in agriculture as an inducer that triggers immunity of plants against telluric pathogens in general and of date palm against Fusarium oxysporum f. sp. albedinis in particular.


Subject(s)
Alginates/pharmacology , Phaeophyceae/chemistry , Phoeniceae/microbiology , Plant Diseases/prevention & control , Alginates/isolation & purification , Fusariosis/prevention & control , Fusarium/isolation & purification , Gene Expression Regulation, Plant/genetics , Glucans/pharmacology , Lipoxygenase/metabolism , Phoeniceae/genetics , Plant Diseases/microbiology , Secondary Metabolism , Superoxide Dismutase/metabolism
10.
Plants (Basel) ; 10(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34961129

ABSTRACT

The anti-inflammatory and antihyperglycemic effects of polysaccharides extracted from Alhagi maurorum Medik. seeds, spontaneous shrub collected in Southern of Algerian Sahara were investigated. Their water extraction followed by alcoholic precipitation was conducted to obtain two water-soluble polysaccharides extracts (WSPAM1 and WSPAM2). They were characterized using Fourier transform infrared, 1H/13C Nuclear Magnetic Resonance, Gas Chromatography-Mass Spectrometry and Size Exclusion Chromatography coupled with Multi-Angle Light Scattering. The capacity of those fractions to inhibit α-amylase activity and thermally induced Bovine Serum Albumin denaturation were also investigated. WSPAM1 and WSPAM2 were galactomannans with a mannose/galactose ratio of 2.2 and 2.4, respectively. The SEC-MALLS analysis revealed that WSPAM1 had a molecular weight of 1.4 × 106 Da. The investigations highlighted antinflammatory and antihyperglycemic effects in a dose-dependant manner of WSPAM1 and WSPAM2.

11.
Mar Drugs ; 18(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086600

ABSTRACT

Polysaccharides extracted from marine algae have attracted much attention due to their biotechnological applications, including therapeutics, cosmetics, and mainly in agriculture and horticulture as biostimulants, biofertilizers, and stimulators of the natural defenses of plants. This study aimed to evaluate the ability of alginate isolated from Bifurcaria bifurcata from the Moroccan coast and oligoalginates derivatives to stimulate the natural defenses of tomato seedlings. Elicitation was carried out by the internodal injection of bioelicitor solutions. The elicitor capacities were evaluated by monitoring the activity of phenylalanine ammonia-lyase (PAL) as well as polyphenols content in the leaves located above the elicitation site for 5 days. Alginate and oligoalginates treatments triggered plant defense responses, which showed their capacity to significantly induce the PAL activity and phenolic compounds accumulation in the leaves of tomato seedlings. Elicitation by alginates and oligoalginates showed an intensive induction of PAL activity, increasing from 12 h of treatment and remaining at high levels throughout the period of treatment. The amount of polyphenols in the leaves was increased rapidly and strongly from 12 h of elicitation by both saccharide solutions, representing peaks value after 24 h of application. Oligoalginates exhibited an effective elicitor capacity in polyphenols accumulation compared to alginate polymers. The alginate and oligosaccharides derivatives revealed a similar elicitor capacity in PAL activity whereas the accumulation of phenolic compounds showed a differential effect. Polysaccharides extracted from the brown seaweed Bifurcaria bifurcate and oligosaccharides derivatives induced significantly the phenylpropanoid metabolism in tomato seedlings. These results contribute to the valorization of marine biomass as a potential bioresource for plant protection against phytopathogens in the context of eco-sustainable green technology.


Subject(s)
Alginates/pharmacology , Oligosaccharides/pharmacology , Phaeophyceae/chemistry , Protective Agents/pharmacology , Seedlings/metabolism , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism , Alginates/chemistry , Alginates/isolation & purification , Morocco , Oligosaccharides/chemistry , Oligosaccharides/isolation & purification , Phenylalanine Ammonia-Lyase/analysis , Phenylalanine Ammonia-Lyase/drug effects , Phenylalanine Ammonia-Lyase/isolation & purification , Plant Leaves/chemistry , Polyphenols/analysis , Polyphenols/isolation & purification , Polyphenols/metabolism , Protective Agents/chemistry , Protective Agents/isolation & purification , Secondary Metabolism , Seedlings/chemistry
12.
Molecules ; 25(3)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32046017

ABSTRACT

Our study aimed to search for seaweed polysaccharides able to stimulate date palm defense mechanisms. Extraction, purification, characterization, and elicitor activity of sodium alginate (FSSA and BBSA) from Moroccan brown seaweeds Fucus spiralis and Bifurcaria bifurcata were investigated. FSSA and BBSA were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR) and size exclusion chromatography (HPLC-SEC). The mannuronic acid/guluronic acid (M/G) ratio of FSSA was M/G= 0.92 indicating that FSSA contained 48% and 52% of mannuronic and guluronic acids respectively, and the M/G ratio of BBSA was 0.47 indicating that BBSA contained 32% and 68% of mannuronic and guluronic acids respectively. Elicitor activity of FSSA and BBSA was carried out by developing an innovative study model on the date palm. The elicitor capacities were evaluated by investigating phenolic metabolism including phenylalanine ammonia-lyase (PAL) activity and total polyphenol content in seedling roots of date palm maintained in alginates solution (FSSA and BBSA) at different concentrations. The results obtained show that the PAL activity and the phenolic compound content were significantly stimulated with 1 mg.mL-1 of FSSA and BBSA; after 1 day of treatment with FSSA, and after 12 hours of treatment with BBSA. These results show clearly those alginates extracted from Moroccan brown algae induced in date palm roots the stimulation of natural defense mechanisms.


Subject(s)
Alginates/pharmacology , Biological Products/pharmacology , Phaeophyceae/chemistry , Phoeniceae/drug effects , Plant Roots/drug effects , Alginates/chemistry , Biological Products/chemistry , Glucuronic Acid/chemistry , Glucuronic Acid/pharmacology , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Magnetic Resonance Spectroscopy/methods , Phenylalanine Ammonia-Lyase/metabolism , Phoeniceae/metabolism , Plant Roots/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology , Seaweed/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...