Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 28(19): 27346-27357, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988031

ABSTRACT

To realize ubiquitously used photonic integrated circuits, on-chip nanoscale sources are essential components. Subwavelength nanolasers, especially those based on a metal-clad design, already possess many desirable attributes for an on-chip source such as low thresholds, room-temperature operation and ultra-small footprints accompanied by electromagnetic isolation at pitch sizes down to ∼50 nm. Another valuable characteristic for a source would be control over its emission wavelength and intensity in real-time. Most efforts on tuning/modulation thus far report static changes based on irreversible techniques not suited for high-speed operation. In this study, we demonstrate in-situ dynamical tuning of the emission wavelength of a metallo-dielectric nanolaser at room temperature by applying an external DC electric field. Using an AC electric field, we show that it is also possible to modulate the output intensity of the nanolaser at high speeds. The nanolaser's emission wavelength in the telecom band can be altered by as much as 8.35 nm with a tuning sensitivity of ∼1.01 nm/V. Additionally, the output intensity can be attenuated by up to 89%, a contrast sufficient for digital data communication purposes. Finally, we achieve an intensity modulation speed up to 400 MHz, limited only by the photodetector bandwidth used in this study, which underlines the capability of high-speed operation via this method. This is the first demonstration of a telecom band nanolaser source with dynamic spectral tuning and intensity modulation based on an external E-field to the best of our knowledge.

2.
Appl Opt ; 59(13): 4158-4164, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32400693

ABSTRACT

We demonstrate a laser tunable in intensity with gigahertz tuning speed based on a III/V reflective semiconductor optical amplifier (RSOA) coupled to a silicon photonic chip. The silicon chip contains a Bragg-based Fabry-Perot resonator to form a passive bandpass filter within its stopband to enable single-mode operation of the laser. We observe a side mode suppression ratio of 43 dB, linewidth of 790 kHz, and an optical output power of 1.65 mW around 1530 nm. We also investigate using a micro-ball lens as an alternative coupling method between the RSOA and the silicon chip.

3.
Opt Lett ; 44(15): 3669-3672, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31368939

ABSTRACT

We experimentally demonstrate the lasing action of a new nanolaser design with a tunnel junction. By using a heavily doped tunnel junction for hole injection, we can replace the p-type contact material of a conventional nanolaser diode with a low-resistance n-type contact layer. This leads to a significant reduction of the device resistance and lowers the threshold voltage from 5 V to around 0.95 V at 77 K. The lasing behavior is verified by the light output versus the injection current (L-I) characterization and second-order coherence function measurements. Because of less Joule heating during current injection, the nanolaser can be operated at temperatures as high as 180 K under CW pumping. The incorporation of heavily doped tunnel junctions may pave the way for other nanoscale cavity design for improved heat management.

4.
Sci Rep ; 9(1): 11166, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31371764

ABSTRACT

Microwave photonics uses light to carry and process microwave signals over a photonic link. However, light can instead be used as a stimulus to microwave devices that directly control microwave signals. Such optically controlled amplitude and phase-shift switches are investigated for use in reconfigurable microwave systems, but they suffer from large footprint, high optical power level required for switching, lack of scalability and complex integration requirements, restricting their implementation in practical microwave systems. Here, we report Monolithic Optically Reconfigurable Integrated Microwave Switches (MORIMSs) built on a CMOS compatible silicon photonic chip that addresses all of the stringent requirements. Our scalable micrometer-scale switches provide higher switching efficiency and require optical power orders of magnitude lower than the state-of-the-art. Also, it opens a new research direction on silicon photonic platforms integrating microwave circuitry. This work has important implications in reconfigurable microwave and millimeter wave devices for future communication networks.

5.
Opt Express ; 26(7): 8805-8820, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715843

ABSTRACT

A theoretical model describing the dynamical behavior of dual-frequency solid-state lasers including a buffer reservoir (BR) is presented. It relies on the introduction of two additional coupled rate equations describing the interaction of the two laser modes with the BR. The relative intensity noise is derived by taking into account the fluctuations of both pump intensity and intra-cavity photons. This modelling approach accurately predicts the experimental noise spectra obtained with an Er,Yb:glass dual-frequency laser implemented in different cavity architecture configurations. The mode coupling strength in the BR is shown to rule the reduction efficiency of the excess noise lying at the in-phase and anti-phase frequencies.

6.
Opt Lett ; 42(22): 4760-4763, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29140362

ABSTRACT

To achieve high packing density in on-chip photonic integrated circuits, subwavelength scale nanolasers that can operate without crosstalk are essential components. Metallo-dielectric nanolasers are especially suited for this type of dense integration due to their lower Joule loss and nanoscale dimensions. Although coupling between optical cavities when placed in proximity to one another has been widely reported, whether the phenomenon is induced for metal-clad cavities has not been investigated thus far. We demonstrate coupling between two metallo-dielectric nanolasers by reducing the separation between the two cavities. A split in the resonant wavelength and quality factor is observed, caused by the creation of bonding and anti-bonding supermodes. To preserve the independence of the two closely spaced cavities, the resonance of one of the cavities is detuned relative to the other, thereby preventing coupling.

7.
Science ; 358(6363): 636-640, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29025992

ABSTRACT

Resonant cavities are essential building blocks governing many wave-based phenomena, but their geometry and reciprocity fundamentally limit the integration of optical devices. We report, at telecommunication wavelengths, geometry-independent and integrated nonreciprocal topological cavities that couple stimulated emission from one-way photonic edge states to a selected waveguide output with an isolation ratio in excess of 10 decibels. Nonreciprocity originates from unidirectional edge states at the boundary between photonic structures with distinct topological invariants. Our experimental demonstration of lasing from topological cavities provides the opportunity to develop complex topological circuitry of arbitrary geometries for the integrated and robust generation and transport of photons in classical and quantum regimes.

8.
Opt Lett ; 40(7): 1149-52, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25831279

ABSTRACT

The cancellation of resonant intensity noise, from a few kHz up to several GHz, is reported using a second-harmonic generation (SHG) buffer reservoir in a Nd:YAG solid-state laser. This approach is shown to be well suited and easily optimizable for reducing the excess noise lying at the laser relaxation oscillations as well as that originating from the beating between the lasing mode and nonlasing adjacent longitudinal modes. A thorough analysis of noise spectra of both laser and SHG signals confirms definitely that noise reduction is a consequence of a deep laser dynamics modification rather than noise evacuation mechanism.

9.
Opt Lett ; 39(17): 5014-7, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25166062

ABSTRACT

The introduction of a buffer reservoir mechanism with optimized time-constants and cross sections in a laser system enables breaking any resonant exchange between the population inversion and photon population over an extremely wide bandwidth. The associated noise cancellation, including the excess noise at relaxation oscillations and spontaneous-signal beating, is experimentally evidenced up to 16 GHz in an Er,Yb laser comprising a GaAs two-photon absorber. Such approach is shown to preserve the laser linewidth quality and is advantageously implemented for optical distribution of frequency references.

10.
Opt Express ; 21(7): 8773-80, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571966

ABSTRACT

A theoretical and experimental investigation of the intensity noise reduction induced by two-photon absorption in a Er,Yb:Glass laser is reported. The time response of the two-photon absorption mechanism is shown to play an important role on the behavior of the intensity noise spectrum of the laser. A model including an additional rate equation for the two-photon-absorption losses is developed and allows the experimental observations to be predicted.


Subject(s)
Computer-Aided Design , Lasers , Computer Simulation , Equipment Design , Equipment Failure Analysis , Models, Theoretical , Photons , Signal-To-Noise Ratio
11.
Opt Lett ; 37(23): 4901-3, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202084

ABSTRACT

A reduction of more than 20 dB of the intensity noise at the antiphase relaxation oscillation frequency is experimentally demonstrated in a two-polarization dual-frequency solid-state laser without any optical or electronic feedback loop. Such behavior is inherently obtained by aligning the two orthogonally polarized oscillating modes with the crystallographic axes of a (100)-cut neodymium-doped yttrium aluminum garnet active medium. The antiphase noise level is shown to increase as soon as one departs from this peculiar configuration, evidencing the predominant role of the nonlinear coupling constant. This experimental demonstration opens new perspectives on the design and realization of extremely low-noise dual-frequency solid-state lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...