Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Ther Res Clin Exp ; 92: 100573, 2020.
Article in English | MEDLINE | ID: mdl-31956378

ABSTRACT

BACKGROUND: Viscosupplementation of synovial fluid with intra-articular (IA) injections of hyaluronic acid (HA) is widely used for symptomatic treatment of osteoarthritis (OA). Herein we present HCS, a new combination of chemicals, associating HA and chondroitin sulfate (CS), both members of the glycosaminoglycan (GAGs) family, which are major components of the joint. HA provides viscosity to the synovial fluid and CS provides elasticity to the cartilage. Reduced levels of HA and CS are observed in OA joints and are associated with progressive cartilage damage and loss. OBJECTIVE: The objective of the study was to evaluate the pharmacokinetic (PK) properties of both HA and CS after IA administration in a validated OA animal model. METHODS: Motion impairment measurements and histological examinations were used to validate the ability of an IA injection of mono-iodoacetate (MIA) in the knee of rats to induce OA symptoms. Then, the PK properties of HA and CS after IA administration were characterized and each active ingredient was independently profiled: HA was labeled with tritium (3H-HA) and CS was labeled with carbon 14. (14C-CS) The final radio-labeled solution reproduced the cold HCS formulation. RESULTS: Four male Sprague-Dawley rats received a 1 mg MIA injection on day 1, then motor impairment was monitored from day 4 to day 18. Chondrocyte necrosis, loss of GAGs and other cartilage damage were observed. Twelve other rats received a MIA IA injection on day 1 then a radio-labeled HCS IA injection (50 µL) on day 8. Plasma and knee cartilage were collected postadministration and the terminal half-life was similar in both matrices (about 5 days), for both 3H-HA and 14C-CS. CONCLUSIONS: Despite differences in their molecular size, HA and CS showed PK behavior similarly characterized by prolonged residence inside the joint and slow release in plasma, favoring long-term beneficial effects. (Curr Ther Res Clin Exp. 2020; 92:XXX-XXX).

2.
J Pharmacol Toxicol Methods ; 81: 136-43, 2016.
Article in English | MEDLINE | ID: mdl-27095299

ABSTRACT

INTRODUCTION: Cardiovascular safety assessment requires accurate evaluation of QT interval, which depends on the length of the cardiac cycle and also on core body temperature (BT). Increases in QT interval duration have been shown to be associated with decreases in BT in dogs. METHODS: An example of altered QT interval duration associated with changes in body temperature observed during a 4-week regulatory toxicology study in dogs is presented. Four groups of Beagle dogs received the vehicle or test item once on Day 1, followed by a 4-week observation period. Electrocardiogram (ECG) parameters were continuously recorded on Days 1 and 26 by jacketed external telemetry (JET). Core body temperature (BT) was measured with a conventional rectal thermometer at appropriate time-points during the Day 1 recording period. RESULTS: Decreased BT was observed approximately 2h after treatment on Day 1, along with increased QT interval duration corrected according to the Van de Water formula (QTcV), but the effect was no longer observed after correction for changes in BT [QTcVcT=QTcV-14(37.5-BT)] according to the Van der Linde formula. No significant changes in QTcV were reported at the end of the observation period, on Day 26. DISCUSSION: The present study demonstrates that core body (rectal) temperature can easily be monitored at appropriate time-points during JET recording in regulatory toxicology studies in dogs, in order to correct QT interval duration values for treatment-related changes in BT. The successful application of the Van der Linde formula to correct QTc prolongation for changes in BT was demonstrated.


Subject(s)
Body Temperature/drug effects , Electrocardiography/drug effects , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Toxicology/methods , Algorithms , Animals , Dogs , Ether-A-Go-Go Potassium Channels/drug effects , Female , HEK293 Cells , Heart Rate/drug effects , Humans , Male , Patch-Clamp Techniques , Potassium Channel Blockers , Safety , Telemetry , Toxicology/legislation & jurisprudence
3.
Br J Pharmacol ; 144(3): 376-85, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15655517

ABSTRACT

Torsade de Pointes (TdP) is a well-described major risk associated with various kinds of drugs. However, prediction of this risk is still uncertain both in preclinical and clinical trials. We tested 45 reference compounds on the model of isolated canine Purkinje fibres. Of them, 22 are clearly associated and/or labelled with a risk of TdP, and 13 others are drugs with published clinical evidence of QT prolongation, with only one or two exceptional cases of TdP. The 10 remaining drugs are without reports of TdP and QT prolongation. The relevance of different indicators such as APD(90) increase, reverse use dependency, action potential triangulation or effect on V(max) was evaluated by comparison with available clinical data. Finally, a complex algorithm called TDPscreen and based on two subalgorithms corresponding to particular electrophysiological patterns was defined. This latter algorithm enabled a clear separation of drugs into three groups: (A) drugs with numerous or several reports (>2 cases) of TdP, (B) drugs causing QT prolongation and/or TdP only, the latter at a very low frequency (< or =2 cases), (C) drugs without reports of TdP or QT prolongation. The use of such an algorithm combined with a database accrued from reference compounds with available clinical data is suggested as a basis for testing new candidate drugs in the early stages of development for proarrhythmic risk prediction.


Subject(s)
Purkinje Fibers/drug effects , Torsades de Pointes/chemically induced , Action Potentials/drug effects , Algorithms , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Dogs , Drug Evaluation, Preclinical , Electrocardiography/drug effects , In Vitro Techniques , Male , Models, Neurological , Perfusion , Purkinje Fibers/physiology , Torsades de Pointes/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...