Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 255: 121497, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555787

ABSTRACT

Microcystins (MCs) constitute a significant threat to human and environmental health, urging the development of effective removal methods for these toxins. In this review, we explore the potential of MC-degrading bacteria as a solution for the removal of MCs from water. The review insights into the mechanisms of action employed by these bacteria, elucidating their ability to degrade and thus remove MCs. After, the review points out the influence of the structural conformation of MCs on their removal, particularly their stability at different water depths within different water bodies. Then, we review the crucial role played by the production of MCs in ensuring the survival and safeguarding of the enzymatic activities of Microcystis cells. This justifies the need for developing effective and sustainable methods for removing MCs from aquatic ecosystems, given their critical ecological function and potential toxicity to humans and animals. Thereafter, challenges and limitations associated with using MC-degrading bacteria in water treatment are discussed, emphasizing the need for further research to optimize the selection of bacterial strains used for MCs biodegradation. The interaction of MCs-degrading bacteria with sediment particles is also crucial for their toxin removal potential and its efficiency. By presenting critical information, this review is a valuable resource for researchers, policymakers, and stakeholders involved in developing sustainable and practical approaches to remove MCs. Our review highlights the potential of various applications of MC-degrading bacteria, including multi-soil-layering (MSL) technologies. It emphasizes the need for ongoing research to optimize the utilization of MC-degrading bacteria in water treatment, ultimately ensuring the safety and quality of water sources. Moreover, this review highlights the value of bibliometric analyses in revealing research gaps and trends, providing detailed insights for further investigations. Specifically, we discuss the importance of employing advanced genomics, especially combining various OMICS approaches to identify and optimize the potential of MCs-degrading bacteria.

2.
Toxins (Basel) ; 13(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33562776

ABSTRACT

Microcystins (MCs) produced in eutrophic waters may decrease crop yield, enter food chains and threaten human and animal health. The main objective of this research was to highlight the role of rhizospheric soil microbiota to protect faba bean plants from MCs toxicity after chronic exposure. Faba bean seedlings were grown in pots containing agricultural soil, during 1 month under natural environmental conditions of Marrakech city in Morocco (March-April 2018) and exposed to cyanobacterial extracts containing up to 2.5 mg·L-1 of total MCs. Three independent exposure experiments were performed (a) agricultural soil was maintained intact "exposure experiment 1"; (b) agricultural soil was sterilized "exposure experiment 2"; (c) agricultural soil was sterilized and inoculated with the rhizobia strain Rhizobium leguminosarum RhOF34 "exposure experiment 3". Overall, data showed evidence of an increased sensitivity of faba bean plants, grown in sterilized soil, to MCs in comparison to those grown in intact and inoculated soils. The study revealed the growth inhibition of plant shoots in both exposure experiments 2 and 3 when treated with 2.5 mg·L-1 of MCs. The results also showed that the estimated daily intake (EDI) of MCs, in sterilized soil, exceeded 2.18 and 1.16 times the reference concentrations (0.04 and 0.45 µg of microcysin-leucine arginine (MC-LR). Kg-1 DW) established for humans and cattle respectively, which raises concerns about human food chain contamination.


Subject(s)
Agricultural Irrigation , Biological Control Agents/metabolism , Crop Protection , Crops, Agricultural/microbiology , Food Microbiology , Microcystins/metabolism , Rhizosphere , Soil Microbiology , Vicia faba/microbiology , Water Microbiology , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Food Supply , Harmful Algal Bloom , Risk Assessment , Vicia faba/growth & development , Vicia faba/metabolism
3.
Toxins (Basel) ; 12(8)2020 08 17.
Article in English | MEDLINE | ID: mdl-32824610

ABSTRACT

The application of natural compounds extracted from seaweeds is a promising eco-friendly alternative solution for harmful algae control in aquatic ecosystems. In the present study, the anti-cyanobacterial activity of three Moroccan marine macroalgae essential oils (EOs) was tested and evaluated on unicellular Microcystis aeruginosa cyanobacterium. Additionally, the possible anti-cyanobacterial response mechanisms were investigated by analyzing the antioxidant enzyme activities of M. aeruginosa cells. The results of EOs GC-MS analyses revealed a complex chemical composition, allowing the identification of 91 constituents. Palmitic acid, palmitoleic acid, and eicosapentaenoic acid were the most predominant compounds in Cystoseira tamariscifolia, Sargassum muticum, and Ulva lactuca EOs, respectively. The highest anti-cyanobacterial activity was recorded for Cystoseira tamariscifolia EO (ZI = 46.33 mm, MIC = 7.81 µg mL-1, and MBC = 15.62 µg mL-1). The growth, chlorophyll-a and protein content of the tested cyanobacteria were significantly reduced by C. tamariscifolia EO at both used concentrations (inhibition rate >67% during the 6 days test period in liquid media). Furthermore, oxidative stress caused by C. tamariscifolia EO on cyanobacterium cells showed an increase of the activities of superoxide dismutase (SOD) and catalase (CAT), and malondialdehyde (MDA) concentration was significantly elevated after 2 days of exposure. Overall, these experimental findings can open a promising new natural pathway based on the use of seaweed essential oils to the fight against potent toxic harmful cyanobacterial blooms (HCBs).


Subject(s)
Microcystis/drug effects , Microcystis/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Seaweed/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antioxidants , Bacterial Proteins/drug effects , Catalase/drug effects , Chlorophyll A/metabolism , Malondialdehyde/metabolism , Microbial Sensitivity Tests , Oils, Volatile/isolation & purification , Oxidative Stress , Superoxide Dismutase/drug effects
4.
Chemosphere ; 225: 270-281, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30877921

ABSTRACT

Over the last decades, global warming has increasingly stimulated the expansion of cyanobacterial blooms in freshwater ecosystems worldwide, in which toxic cyanobacteria produce various congeners of cyanotoxins, mainly dominated by microcystins (MCs). MCs introduced into agricultural soils have deleterious effects on the germination, growth and development of plants and their associated microbiota, leading to remarkable yield losses. Phytotoxicity of MCs may refer to the inhibition of phosphatases activity, generating deleterious reactive oxygen species, altering gene functioning and phytohormones translocation within the plant. It is also known that MCs can pass through the root membrane barrier, translocate within plant tissues and accumulate into different organs, including edible ones. Also, MCs impact the microbial activity in soil via altering plant-bacterial symbioses and decreasing bacterial growth rate of rhizospheric microbiota. Moreover, MCs can persist in agricultural soils through adsorption to clay-humic acid particles and results in a long-term contact with the plant-microflora complex. However, their bioavailability to plants and half-life in soil seem to be influenced by biodegradation process and soil physicochemical properties. This review reports the latest and most relevant information regarding MCs-phytotoxicity and impact on soil microbiota, the persistence in soil, the degradation by native microflora and the bioaccumulation within plant tissues.


Subject(s)
Ecosystem , Microcystins/metabolism , Microcystins/toxicity , Plants/drug effects , Soil/chemistry , Agriculture , Biodegradation, Environmental , Plants/metabolism , Plants/microbiology
5.
Environ Sci Pollut Res Int ; 26(15): 15218-15228, 2019 May.
Article in English | MEDLINE | ID: mdl-30927222

ABSTRACT

Marine macroalgae are a promising source of diverse bioactive compounds with applications in the biocontrol of harmful cyanobacteria blooms (cyanoHABs). In this work, we evaluated the potential algicidal activities of 14 species of seaweed collected from the coast of Souiria Laqdima, Morocco. Methanol extracts were screened in solid and liquid medium against the growth of the toxic cyanobacteria Microcystis aeruginosa and the microalgae Chlorella sp. used as food supplement. The results in solid medium revealed that the algicidal activity was limited to M. aeruginosa with the extract of Bornetia secundiflora showing the highest growth inhibition activity against Microcystis (27.33 ± 0.33 mm), whereas the extracts of Laminaria digitata, Halopytis incurvus, Ulva lactuca, and Sargasum muticum showed no inhibition. In liquid medium, the results indicated that all methanolic extracts of different macroalgae tested have a significant inhibitory effect on M. aeruginosa compared with that of the negative control. The maximum inhibition rates of M. aeruginosa were produced by the extracts of Bifurcaria tuberculata, Codium elongatum, and B. secundiflora. Moreover, the extracts of B. secundiflora recorded the maximum inhibition rate of Chlorella sp. Overall, the results highlight the potential of the extracts from macroalgae to control toxic cyanobacteria species.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cyanobacteria/drug effects , Microalgae/chemistry , Microcystis/drug effects , Seaweed/metabolism , Ulva/metabolism , Anti-Bacterial Agents/chemistry , Chlorella , Morocco , Seaweed/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...