Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Signal Transduct Target Ther ; 5(1): 89, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32533062

ABSTRACT

Coronavirus infections of multiple origins have spread to date worldwide, causing severe respiratory diseases. Seven coronaviruses that infect humans have been identified: HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2. Among them, SARS-CoV and MERS-CoV caused outbreaks in 2002 and 2012, respectively. SARS-CoV-2 (COVID-19) is the most recently discovered. It has created a severe worldwide outbreak beginning in late 2019, leading to date to over 4 million cases globally. Viruses are genetically simple, yet highly diverse. However, the recent outbreaks of SARS-CoV and MERS-CoV, and the ongoing outbreak of SARS-CoV-2, indicate that there remains a long way to go to identify and develop specific therapeutic treatments. Only after gaining a better understanding of their pathogenic mechanisms can we minimize viral pandemics. This paper mainly focuses on SARS-CoV, MERS-CoV, and SARS-CoV-2. Here, recent studies are summarized and reviewed, with a focus on virus-host interactions, vaccine-based and drug-targeted therapies, and the development of new approaches for clinical diagnosis and treatment.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Host-Pathogen Interactions/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Signal Transduction/drug effects , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Molecular Targeted Therapy/methods , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Signal Transduction/genetics , Signal Transduction/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/virology
2.
Trends Biochem Sci ; 44(8): 701-715, 2019 08.
Article in English | MEDLINE | ID: mdl-31036406

ABSTRACT

Decades have passed without approval of a new antibiotic class. Several companies have recently halted related discovery efforts because of multiple obstacles. One promising route under research is to target the lipoprotein maturation pathway in light of major recent findings and the virulence roles of lipoproteins. To support the future design of selective drugs, considerations and priority-setting are established for the main lipoprotein processing enzymes (Lgt, LspA, and Lnt) based on microbiology, biochemistry, structural biology, chemical design, and pharmacology. Although not all bacterial species will be similarly impacted by drug candidates, several advantages make LspA a top target to pursue in the development of novel antibiotics effective against bacteria that are resistant to existing drugs.


Subject(s)
Anti-Infective Agents/chemistry , Bacterial Proteins/chemistry , Lipoproteins/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/pharmacology , Catalytic Domain , Drug Evaluation, Preclinical , Drug Resistance, Multiple, Bacterial/drug effects , Lipoproteins/pharmacology , Membrane Proteins/metabolism , Protein Conformation , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Transferases/metabolism , Virulence
3.
Int J Biol Macromol ; 117: 870-877, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29859843

ABSTRACT

Bacterial lipoproteins have been researched for decades due to their roles in a large number of biological functions. There were no structures of their main three membrane processing enzymes, until 2016 for Lgt and LspA, and then 2017 for Lnt with not one but three simultaneous, independent publications. We have analyzed the recent findings for this apolipoprotein N-acyltransferase Lnt, with comparisons between the novel structures, and with soluble nitrilases, to determine the significance of unique features in terms of substrate's recognition and binding mechanism influenced by exclusive residues, two transmembrane helices, and a flexible loop.


Subject(s)
Acyltransferases/chemistry , Acyltransferases/metabolism , Bacteria/metabolism , Catalytic Domain , Crystallography, X-Ray , Lipoproteins/metabolism
4.
Sci Rep ; 7(1): 6384, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743995

ABSTRACT

Scanning electron microscopy and X-ray microtomography are useful methods for high resolution shape imaging. Visible microscopy is also common, however, developing a low-cost and customizable system for surface and shape investigation of optically active particles is challenging. In this work, we demonstrate an assembly offering good light sensitivity, flexibility of illumination and contrasts from varying angles. The design was applied, together with recent programs for focus-stacking, to analyze crystals of taurine, L-glutamic acid, acetylsalicylic acid, and copper sulfate, along with digital 3D-360° modelling of phosphorescent [Ru(bpy)3]Cl2 and strontium aluminate particles. We further tested the approach for real time monitoring of size, shape and texture analysis of fat filled milk particles and acid whey powders. The findings show proof of concept for detailed feature imaging of particles directly from the process environment.

5.
Science ; 351(6275): 876-80, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26912896

ABSTRACT

With functions that range from cell envelope structure to signal transduction and transport, lipoproteins constitute 2 to 3% of bacterial genomes and play critical roles in bacterial physiology, pathogenicity, and antibiotic resistance. Lipoproteins are synthesized with a signal peptide securing them to the cytoplasmic membrane with the lipoprotein domain in the periplasm or outside the cell. Posttranslational processing requires a signal peptidase II (LspA) that removes the signal peptide. Here, we report the crystal structure of LspA from Pseudomonas aeruginosa complexed with the antimicrobial globomycin at 2.8 angstrom resolution. Mutagenesis studies identify LspA as an aspartyl peptidase. In an example of molecular mimicry, globomycin appears to inhibit by acting as a noncleavable peptide that sterically blocks the active site. This structure should inform rational antibiotic drug discovery.


Subject(s)
Anti-Bacterial Agents/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Peptides/chemistry , Pseudomonas aeruginosa/enzymology , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Aspartic Acid Endopeptidases/genetics , Bacterial Proteins/genetics , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Mutagenesis , Peptides/pharmacology , Protein Conformation , Protein Processing, Post-Translational , Substrate Specificity
6.
Int J Food Sci Nutr ; 66(5): 526-32, 2015.
Article in English | MEDLINE | ID: mdl-26176650

ABSTRACT

Powdered infant formula (PIF) can be the sole source of nutrition for babies and infants. Monitoring conformational changes in protein during manufacture of PIF is critical in order to maintain its nutritional value. This study presents the development of a calibration model for monitoring conformational changes in PIF protein by applying a novel multipoint near-infrared (NIR) spectrometry. NIR spectra were collected for PIF and PIF proteins, casein and whey protein isolate, before and after heat treatment. Results show that principal component analysis showed discrimination between native protein at room temperature and protein conformational changes caused at elevated temperature. Partial least squares regression analysis showed good calibration models with correlation coefficients ranging between 87% and 99% for the prediction of protein quality. This novel multipoint NIR spectrometry could serve as a simple in-line tool to rapidly monitor protein quality during processing stages, contributing to product nutritional value.


Subject(s)
Calibration , Dietary Proteins/chemistry , Infant Formula/chemistry , Models, Chemical , Nutritive Value , Protein Stability , Spectroscopy, Near-Infrared/methods , Caseins/chemistry , Dietary Proteins/standards , Humans , Infant , Least-Squares Analysis , Powders , Principal Component Analysis , Protein Conformation , Temperature , Whey Proteins/chemistry
7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2054-68, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25084326

ABSTRACT

The exopolysaccharide alginate is an important component of biofilms produced by Pseudomonas aeruginosa, a major pathogen that contributes to the demise of cystic fibrosis patients. Alginate exits the cell via the outer membrane porin AlgE. X-ray structures of several AlgE crystal forms are reported here. Whilst all share a common ß-barrel constitution, they differ in the degree to which loops L2 and T8 are ordered. L2 and T8 have been identified as an extracellular gate (E-gate) and a periplasmic gate (P-gate), respectively, that reside on either side of an alginate-selectivity pore located midway through AlgE. Passage of alginate across the membrane is proposed to be regulated by the sequential opening and closing of the two gates. In one crystal form, the selectivity pore contains a bound citrate. Because citrate mimics the uronate monomers of alginate, its location is taken to highlight a route through AlgE taken by alginate as it crosses the pore. Docking and molecular-dynamics simulations support and extend the proposed transport mechanism. Specifically, the P-gate and E-gate are flexible and move between open and closed states. Citrate can leave the selectivity pore bidirectionally. Alginate docks stably in a linear conformation through the open pore. To translate across the pore, a force is required that presumably is provided by the alginate-synthesis machinery. Accessing the open pore is facilitated by complex formation between AlgE and the periplasmic protein AlgK. Alginate can thread through a continuous pore in the complex, suggesting that AlgK pre-orients newly synthesized exopolysaccharide for delivery to AlgE.


Subject(s)
Pseudomonas aeruginosa/metabolism , Alginates/chemistry , Base Sequence , Cell Membrane/metabolism , Crystallography, X-Ray , DNA Primers , Glucuronic Acid/chemistry , Glucuronic Acid/metabolism , Hexuronic Acids/chemistry , Molecular Dynamics Simulation , Protein Conformation
8.
PLoS One ; 8(5): e63010, 2013.
Article in English | MEDLINE | ID: mdl-23667562

ABSTRACT

Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.


Subject(s)
DNA, Archaeal/genetics , Pyrococcus abyssi/enzymology , Recombinases/chemistry , Recombinases/metabolism , Recombination, Genetic , Tyrosine , Apoenzymes/chemistry , Apoenzymes/metabolism , Base Sequence , Crystallography, X-Ray , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Pyrococcus abyssi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...