Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 93(11): 4932-4943, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33687199

ABSTRACT

Despite being a critical molecule in the brain, mass spectrometry imaging (MSI) of cholesterol has been under-reported compared to other lipids due to the difficulty in ionizing the sterol molecule. In the present work, we have employed an on-tissue enzyme-assisted derivatization strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific structures of the mouse brain, in a model of Niemann-Pick type C1 disease, and during brain development. MSI revealed that in the adult mouse, cholesterol is the highest in the pons and medulla and how its distribution changes during development. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience.


Subject(s)
Cholesterol , Niemann-Pick Disease, Type C , Animals , Brain/diagnostic imaging , Mass Spectrometry , Mice , Niemann-Pick Disease, Type C/diagnostic imaging , Sterols
2.
ACS Appl Mater Interfaces ; 12(33): 37732-37740, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32692925

ABSTRACT

Porous and highly conjugated multiply fused porphyrin thin films are prepared from a fast and single-step chemical vapor deposition approach. While the solution-based coupling of porphyrins is usually undertaken at room temperature, the gas phase reaction of nickel(II) 5,15-(diphenyl)porphyrin and iron(III) chloride (FeCl3) is investigated for temperatures as high as 200 °C. Helium ion and atomic force microscopy, supported by weight and thickness measurements, shows a drastic decrease of the fused porphyrin thin film's density accompanied by the formation of a mesoporous morphology upon increase of the reaction temperature. The increase of the film's porosity is attributed to formation of a greater amount of HCl (originated from both the oxidative coupling and chlorination reactions) and the release of gaseous FeCl3 byproducts, i.e., Cl2, at higher deposition temperatures. In addition, high resolution mass spectrometry reveals that increase of the reaction temperature promotes a higher degree of conjugation of the fused porphyrins chains, which ensures that high electronic conductivities are maintained along with high porosity. The method reported herein could enable the engineering of fused porphyrin thin films in sensing and catalytic devices.

3.
ACS Appl Mater Interfaces ; 10(41): 35516-35525, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30231206

ABSTRACT

Coatings consisting in gentamicin-containing nanocapsules have been synthetized by means of an aerosol-assisted atmospheric pressure plasma deposition process. The influence of different parameters affecting the process has been extensively investigated by means of a morphological and chemical characterization of the coatings. Scanning electron microscopy highlighted the presence of nanocapsules whose size and abundance depend on power input and deposition time. A detailed analysis carried out with matrix-assisted laser desorption ionization coupled to high-resolution mass spectrometry allowed to detect and identify the presence of gentamicin embedded in the coatings and its rearrangement, as a result of the interaction with the plasma. The release of gentamicin in water has been monitored by means of UV-vis fluorescence spectroscopy, and its biological activity has been evaluated as well by the disk diffusion assay against Staphylococcus aureus and Pseudomonas aeruginosa. It is confirmed that the antibacterial activity of gentamicin is preserved in the plasma-deposited coatings. Preliminary cytocompatibility investigations indicated that eukaryotic cells well tolerate the release of gentamicin from the coatings.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Drug Delivery Systems , Nanocapsules/chemistry , Plasma Gases/chemistry , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Gentamicins/chemistry , Gentamicins/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...