Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 685213, 2021.
Article in English | MEDLINE | ID: mdl-34539626

ABSTRACT

Background: Glioma is the most common type of primary brain tumor in adults. Patients with the most malignant form have an overall survival time of <16 months. Although considerable progress has been made in defining the adapted therapeutic strategies, measures to counteract tumor escape have not kept pace, due to the developed resistance of malignant glioma. In fact, identifying the nature and role of distinct tumor-infiltrating immune cells in glioma patients would decipher potential mechanisms behind therapy failure. Methods: We integrated into our study glioma transcriptomic datasets from the Cancer Genome Atlas (TCGA) cohort (154 GBM and 516 LGG patients). LM22 immune signature was built using CIBERSORT. Hierarchical clustering and UMAP dimensional reduction algorithms were applied to identify clusters among glioma patients either in an unsupervised or supervised way. Furthermore, differential gene expression (DGE) has been performed to unravel the top expressed genes among the identified clusters. Besides, we used the least absolute shrinkage and selection operator (LASSO) and Cox regression algorithm to set up the most valuable prognostic factor. Results: Our study revealed, following gene enrichment analysis, the presence of two distinct groups of patients. The first group, defined as cluster 1, was characterized by the presence of immune cells known to exert efficient antitumoral immune response and was associated with better patient survival, whereas the second group, cluster 2, which exhibited a poor survival, was enriched with cells and molecules, known to set an immunosuppressive pro-tumoral microenvironment. Interestingly, we revealed that gene expression signatures were also consistent with each immune cluster function. A strong presence of activated NK cells was revealed in cluster 1. In contrast, potent immunosuppressive components such as regulatory T cells, neutrophils, and M0/M1/M2 macrophages were detected in cluster 2, where, in addition, inhibitory immune checkpoints, such as PD-1, CTLA-4, and TIM-3, were also significantly upregulated. Finally, Cox regression analysis further corroborated that tumor-infiltrating cells from cluster 2 exerted a significant impact on patient prognosis. Conclusion: Our work brings to light the tight implication of immune components on glioma patient prognosis. This would contribute to potentially developing better immune-based therapeutic approaches.


Subject(s)
Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Biomarkers, Tumor , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Glioma/mortality , Glioma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Multivariate Analysis , Prognosis , Survival Analysis , Tumor Microenvironment
2.
BMC Complement Altern Med ; 17(1): 81, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28143472

ABSTRACT

BACKGROUND: Several chronic inflammatory diseases are characterized by inappropriate CD4+ T cell response. In the present study, we assessed the ability of Capparis spinosa L. (CS) preparation to orientate, in vivo, the immune response mediated by CD4+ T cells towards an anti-inflammatory response. METHODS: The in vivo study was carried out by using the contact hypersensitivity (CHS) model in Swiss mice. Then we performed a histological analysis followed by molecular study by using real time RT-PCR. We also realized a phytochemical screening and a liquid-liquid separation of CS preparation. RESULTS: Our study allowed us to detect a significantly reduced edema in mice treated with CS preparations relative to control. CS effect was dose dependent, statistically similar to that observed with indomethacin, independent of the plant genotype and of the period of treatment. Furthermore, our histology studies revealed that CS induced a significant decrease in immune cell infiltration, in vasodilatation and in dermis thickness in the inflammatory site. Interestingly, we showed that CS operated by inhibiting cytokine gene expression including IFNγ, IL-17 and IL-4. Besides, phytochemical screening of CS extract showed the presence of several chemical families such as saponins, flavonoids and alkaloids. One (hexane fraction) out of the three distinct prepared fractions, exhibited an anti-inflammatory effect similar to that of the raw preparation, and would likely contain the bioactive(s) molecule(s). CONCLUSIONS: Altogether, our data indicate that CS regulates inflammation induced in vivo in mice and thus could be a source of anti-inflammatory molecules, which could be used in some T lymphocyte-dependent inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Capparis/chemistry , Cytokines/genetics , Plant Extracts/pharmacology , Acetates , Animals , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Capparis/genetics , Dermatitis, Contact/drug therapy , Dermatitis, Contact/etiology , Dinitrofluorobenzene , Female , Gene Expression/drug effects , Genotype , Hexanes , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Methanol , Mice
3.
BMC Immunol ; 17(1): 26, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27483999

ABSTRACT

BACKGROUND: Capparis Spinosa L. is an aromatic plant growing wild in dry regions around the Mediterranean basin. Capparis Spinosa was shown to possess several properties such as antioxidant, antifungal, and anti-hepatotoxic actions. In this work, we aimed to evaluate immunomodulatory properties of Capparis Spinosa leaf extracts in vitro on human peripheral blood mononuclear cells (PBMCs) from healthy individuals. RESULTS: Using MTT assay, we identified a range of Capparis Spinosa doses, which were not toxic. Unexpectedly, we found out that Capparis Spinosa aqueous fraction exhibited an increase in cell metabolic activity, even though similar doses did not affect cell proliferation as shown by CFSE. Interestingly, Capparis Spinosa aqueous fraction appeared to induce an overall anti-inflammatory response through significant inhibition of IL-17 and induction of IL-4 gene expression when PBMCs were treated with the non toxic doses of 100 and/or 500 µg/ml. Phytoscreening analysis of the used Capparis Spinosa preparations showed that these contain tannins; sterols, alkaloids; polyphenols and flavonoids. Surprisingly, quantification assays showed that our Capparis Spinosa preparation contains low amounts of polyphenols relative to Capparis Spinosa used in other studies. This Capparis Spinosa also appeared to act as a weaker scavenging free radical agent as evidenced by DPPH radical scavenging test. Finally, polyphenolic compounds including catechin, caffeic acid, syringic acid, rutin and ferulic acid were identified by HPLC, in the Capparis spinosa preparation. CONCLUSION: Altogether, these findings suggest that our Capparis Spinosa preparation contains interesting compounds, which could be used to suppress IL-17 and to enhance IL-4 gene expression in certain inflammatory situations. Other studies are underway in order to identify the compound(s) underlying this effect.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Capparis/immunology , Immunologic Factors/pharmacology , Leukocytes, Mononuclear/drug effects , Plant Extracts/pharmacology , Biphenyl Compounds/metabolism , Caffeic Acids/metabolism , Cytokines/metabolism , Dimethyl Sulfoxide/chemistry , Free Radical Scavengers/pharmacology , Gene Expression Regulation/drug effects , Humans , Hydroxybenzoates/chemistry , Leukocytes, Mononuclear/immunology , Methanol/chemistry , Morocco , Picrates/metabolism , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...