Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Immunopathol Pharmacol ; 38: 3946320241260635, 2024.
Article in English | MEDLINE | ID: mdl-38831558

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder mainly affecting joints, yet the systemic inflammation can influence other organs and tissues. The objective of this study was to unravel the ameliorative capability of Ondansetron (O) or ß-sitosterol (BS) against inflammatory reactions and oxidative stress that complicates Extra-articular manifestations (EAM) in liver, kidney, lung, and heart of arthritic and arthritic irradiated rats. METHODS: This was accomplished by exposing adjuvant-induced arthritis (AIA) rats to successive weekly fractions of total body γ-irradiation (2 Gray (Gy)/fraction once per week for four weeks, up to a total dose of 8 Gy). Arthritic and/or arthritic irradiated rats were either treated with BS (40 mg/kg b.wt. /day, orally) or O (2 mg/kg) was given ip) or were kept untreated as model groups. RESULTS: Body weight changes, paw circumference, oxidative stress indices, inflammatory response biomarkers, expression of Janus kinase-2 (JAK-2), Signal transducer and activator of transcription 3 (STAT3), high mobility group box1 (HMGB1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as pro- and anti-inflammatory mediators in the target organs, besides histopathological examination of ankle joints and extra-articular tissues. Treatment of arthritic and/or arthritic irradiated rats with BS or O powerfully alleviated changes in body weight gain, paw swelling, oxidative stress, inflammatory reactions, and histopathological degenerative alterations in articular and non-articular tissues. CONCLUSION: The obtained data imply that BS or O improved the articular and EAM by regulating oxidative and inflammatory indices in arthritic and arthritic irradiated rats.


Subject(s)
Arthritis, Experimental , Kidney , Liver , Lung , Ondansetron , Oxidative Stress , Sitosterols , Animals , Sitosterols/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/radiation effects , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney/radiation effects , Oxidative Stress/drug effects , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver/radiation effects , Male , Ondansetron/pharmacology , HMGB1 Protein/metabolism , Heart/drug effects , Heart/radiation effects , Myocardium/pathology , Myocardium/metabolism , Inflammation/pathology , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/metabolism , Rats, Wistar
2.
Hum Exp Toxicol ; 41: 9603271221142817, 2022.
Article in English | MEDLINE | ID: mdl-36458495

ABSTRACT

BACKGROUND: Although ionizing radiation (IR) has been of immense value to human life due to its involvement in several fields, it doesn't eliminate that exposure to IR results in an array of biological consequences, including oxidative stress, inflammation, and death. Thus, this study aimed to explore the curative effect of trans-Resveratrol (t-Res) on hepatic and renal injury in a rat model exposed to single and fractionated doses of γ-rays. METHODS: Rats exposed to a single dose of IR (6 Gy, as an acute effect) or a fractionated dose of IR (2 Gy/time/3 days, day after day; to imitate a chronic impact) were treated with t-Res. Then, the radio-protective effect of t-Res was investigated via biochemical and histological estimations in the liver and kidney of rats in the different groups. RESULTS: The data displayed a significant amelioration in biochemical and histological indices in the liver and kidney of rats exposed to IR doses and treated with t-Res. Particularly, t-Res reduced the oxidative stress milieu through decreasing HIF-1α, ROS, and MDA levels associated with increased CAT activity and Nrf-2 gene expression. Also, t-Res improved the inflammatory status via a decrease in TNF-α, NF-κB, SOCS-3, and HSP-70 genes expression linked with elevations in SIRT-1 and P53 genes expression. CONCLUSION: It could be concluded that t-Res had hepatoprotective and renoprotective effects against the deleterious consequences of γ-rays exposure due to its antioxidant and anti-inflammatory properties.


Subject(s)
Kidney , Liver , Humans , Rats , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Gamma Rays/adverse effects , Radiation, Ionizing
3.
Hum Exp Toxicol ; 41: 9603271221106344, 2022.
Article in English | MEDLINE | ID: mdl-35656930

ABSTRACT

The exposure to ionizing radiation has become inescapably because of increased dependence on radiation to execute works in different fields and also its influences on biological systems. Thus, the current study aimed at examination of the radio-protective effect of the natural ashwagandha (Ag) against acute and chronic doses of γ-radiation on liver and spleen of rats. The impact of Ag was inspected in rats exposed to acute exposure of 8 Gy (single dose) or to chronic exposure of 8 Gy (2 Gy every other day for 4 times). The data obtained reveals significant amelioration of the redox status (MDA, GSH and ROS) in spleen and liver tissues of rats treated with Ag and exposed to the 2-different modes of γ-radiation. Besides, the changes in inflammatory responses assessed by measurements of IL-17, IL-10 and α7-nAchR are less pronounced in rats received Ag and γ-radiation compared to irradiated rats. Further, the measurements of tissues structural damage markers (MMP-2, MMP-9 and TIMP-1) pointed to benefit of Ag against γ-radiation. The histopathological investigation of spleen and liver tissues confirmed this ameliorating action of Ag counter to γ-radiation hazards. It could be suggested that Ashwagandha could exerts radio-protective influences because of its antioxidants and anti-inflammatory capabilities.


Subject(s)
Withania , Animals , Liver , Plant Extracts/pharmacology , Rats , Spleen
4.
Integr Cancer Ther ; 21: 15347354221096668, 2022.
Article in English | MEDLINE | ID: mdl-35543434

ABSTRACT

The rising interest in innovative methods of cancer immunotherapy has prompted research into the immunomodulatory mechanisms of natural and synthetic substances. The goal of this study was to assess chrysin immune-stimulating and pro-apoptotic effects on tumor growth and cell susceptibility to ionizing radiation in order to improve cancer therapy. Chrysin (20 mg/kg/day) was intraperitoneally injected to mice bearing 1 cm3 solid tumor of Ehrlich ascites carcinoma (EAC) for 21 consecutive days. Mice were whole body exposed to 1 Gy of gamma radiation (2 fractionated dose 0.5 Gy each). Treatment with chrysin dramatically reduces tumor proliferation in EAC mice; furthermore, IFN-γ activity is significantly reduced when compared to EAC mice. When compared to EAC mice, the expression of TNF-α, free radicals, and nitric oxide (NO) levels were considerably reduced, along with improvements in apoptotic regulators (caspase-3 activity). Moreover, the histopathological investigation confirms the improvement exerted by chrysin even in the EAC mice group or the EAC + R group. What is more, exposure to gamma radiation sustained the modulatory effect of chrysin on tumor when compared with EAC + Ch mice. Hence, chrysin might represent a potential therapeutic strategy for increasing the radiation response of solid tumor.


Subject(s)
Carcinoma, Ehrlich Tumor , Animals , Apoptosis , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Flavonoids/pharmacology , Gamma Rays , Humans , Mice
5.
J Labelled Comp Radiopharm ; 65(3): 71-82, 2022 03.
Article in English | MEDLINE | ID: mdl-34984721

ABSTRACT

This work focuses on tracking ulcerative colitis in mice. High labeling yield and radiochemical purity were achieved for the formation of a [125/131 I]balsalazide radiotracer at optimum conditions of oxidizing agent content (chloramines-T [Ch-T], 75 µg), substrate amount (100 µg), pH of reaction mixture (6), reaction time (30 min), and temperature (37°C), using radioactive iodine-125 (200-450 MBq). The radiolabeled compound, [125/131 I]balsalazide, was stable in serum and saline solution during 24 h. Balsalazide is acting as a peroxisome proliferator-activated receptor (PPARγ). Biodistribution studies were carried in normal and ulcerated colon mice. High uptake of 75 ± 1.90% injected dose/g organ (ID/g) observed in ulcerated mice confirmed the suitability of [131 I]balsalazide as a novel radiotracer for ulcerative colitis imaging in mice.


Subject(s)
Colitis, Ulcerative , Thyroid Neoplasms , Animals , Colitis, Ulcerative/diagnostic imaging , Iodine Radioisotopes/chemistry , Mesalamine , Mice , Phenylhydrazines , Tissue Distribution
6.
J Radiat Res ; 62(4): 600-617, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33929015

ABSTRACT

Apelin-13 and APJ are implicated in different key physiological processes. This work aims at exploring the radioprotective effect of fucoxanthin (FX) on γ-radiation (RAD)-induced changes in the apelin-13/APJ pathway, which causes damage in the liver, kidney, lung and spleen of mice. Mice were administered FX (10 mg kg-1 day-1, i.p) and exposed to γ-radiation (2.5 Gy week-1) for four consecutive weeks. The treatment of irradiated mice by FX resulted in a significant amendment in protein expression of the apelin-13/APJ/NF-κB signalling pathway concurrently with reduced hypoxia (hypoxia-inducible factor-1α), suppressed oxidative stress marker (malondialdehyde), enhanced antioxidant defence mechanisms (reduced glutathione and glutathione peroxidase), a modulated inflammatory response [interleukin-6 (IL-6), monocyte chemoattractant protein-1, IL-10 and α-7-nicotinic acetylcholine receptor) and ameliorated angiogenic regulators [matrix metalloproteinase (MMP-2), MMP-9 and tissue inhibitor of metalloproteinase-1), as well as the tissue damage indicator (lactate dehydrogenase) in organ tissues. In addition, there were significant improvement in serum inflammatory markers tumour necrosis factor-α, IL-10, IL-1ß and C-reactive protein compared with irradiated mice. The histopathological investigation of the FX + RAD organ tissues support the biochemical findings where the improvements in the tissues' architecture were obvious when compared with those of RAD. FX was thus shown to have a noticeable radioprotective action mediated through its regulatory effect on the apelin-13/APJ/NF-κB signalling pathway attributed to its antioxidant and anti-inflammatory activity that was reflected in different physiological processes. It could be recommended to use FX in cases of radiation exposure to protect normal tissues.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Organ Specificity/radiation effects , Signal Transduction , Whole-Body Irradiation , Xanthophylls/pharmacology , Animals , Antioxidants/metabolism , Apelin Receptors/metabolism , Gamma Rays , Inflammation/pathology , Kidney/drug effects , Kidney/pathology , Kidney/radiation effects , L-Lactate Dehydrogenase/metabolism , Liver/drug effects , Liver/pathology , Liver/radiation effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , NF-kappa B/metabolism , Organ Specificity/drug effects , Oxidants/metabolism , Signal Transduction/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism
7.
Life Sci ; 276: 119429, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33785333

ABSTRACT

AIM: The therapeutic expediency of cisplatin was limited due to its nephrotoxic side effects, so this study planned to assess the nephrotic and neuroprotective impact of metformin (MET) and low-dose radiation (LDR) in cisplatin-prompted kidney injury and uremic encephalopathy (UE). METHODS: The effect of the 10-day MET treatment (200 mg/kg, orally) and/or fractionated LDR (0.25 Gy, of the total dose of 0.5 Gy, 1st and 7th day, respectively) on (5 mg/kg, intraperitoneally) cisplatin as a single dose was administered at the 5th day. Serum urea, creatinine and renal kidney injury molecule-1 were measured for the assessment of kidney function. Furthermore, the antioxidant potential in the renal and brain tissues was evaluated through, malondialdehyde and reduced glutathione estimation. Moreover, renal apoptotic markers: AMP-activated protein kinase, lipocalin, B-cell lymphoma 2 associated X protein, B-cell lymphoma 2, P53 and beclin 1 were estimated. UE was evaluated through the determination of serum inflammatory markers: nuclear factor kappa B, tumor-necrosis factor-α and interleukin 1 beta likewise, the cognitive deficits were assessed via forced swimming test, gamma-aminobutyric acid, n-methyl-d-aspartate and neuronal nitric oxide synthases besides AMP-activated protein kinase, light chain 3 and caspase3 levels in rats' cerebella. KEY FINDINGS: The obtained results revealed a noticeable improvement in the previously mentioned biochemical factors and behavioral tasks that was reinforced by histopathological examination when using the present remedy. SIGNIFICANCE: metformin and low doses of radiation afforded renoprotection and neuroprotection against cisplatin-induced acute uremic encephalopathy.


Subject(s)
Biomarkers/metabolism , Brain Diseases/prevention & control , Cisplatin/toxicity , Gamma Rays , Metformin/pharmacology , Neuroprotective Agents/pharmacology , Uremia/prevention & control , Animals , Antineoplastic Agents/toxicity , Brain Diseases/chemically induced , Brain Diseases/metabolism , Brain Diseases/pathology , Dose-Response Relationship, Radiation , Glutathione/metabolism , Hypoglycemic Agents/pharmacology , Male , NF-kappa B/metabolism , Oxidative Stress , Rats , Tumor Necrosis Factor-alpha/metabolism , Uremia/chemically induced , Uremia/metabolism , Uremia/pathology
8.
J Cancer Res Ther ; 16(6): 1506-1516, 2020.
Article in English | MEDLINE | ID: mdl-33342821

ABSTRACT

BACKGROUND: Cancer remains a major health issue and the second foremost root of morbidity worldwide behind cardiovascular diseases. Apoptosis had linked to the eradication of possibly malignant cells, hyperplasia, and tumor progression. OBJECTIVE: The present study is an endeavor to evaluate the influence of luteolin, a modifier to apoptotic regulator on the tumor growth and the tumor cell sensitivity to ionizing radiation in Ehrlich solid tumor-bearing mice (E). MATERIALS AND METHODS: Mice were immunized with Ehrlich carcinoma cells (2.5 × 106 cells/mouse), received consecutive equal doses of luteolin, 1.25 mg/mouse/day and exposed to 6.5 Gy of whole-body gamma irradiation (0.46 Gy/min). RESULTS: Luteolin markedly suppresses the developing of tumor in E mice group or mice which bearing tumor with exposure to radiation (E + R group) which has collimated with significant inhibition in protein expression of inflammatory molecules cyclooxygenase 2 and the concentration of (prostaglandin E2). Also, matrix metalloproteinase-2, 9 proteins concentrations significantly decreased with amelioration in apoptotic regulators (Caspase-3 and Granzyme-B activities). The expression of signal transducer and activator of transcription (STAT) and tumor necrosis factor-alpha genes meliorated significantly. Besides, the level of oxidant/antioxidant (reduced glutathione/malondialdehyde) markedly improved. Obviously, the most reduction of changes in all measured parameters has appeared in tumor bearing mice, injected with luteolin and exposed to gamma radiation (E + Luteolin + R group). CONCLUSION: It could be suggested that luteolin has a potential beneficial effect against cancer. This could be due to its ability on the induction of apoptosis, inhibition of inflammatory response, downregulation of angiogenic factors as well as increase sensitivity of tumor cells to gamma radiation.


Subject(s)
Carcinoma, Ehrlich Tumor/therapy , Chemoradiotherapy/methods , Gamma Rays/therapeutic use , Luteolin/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Carcinoma, Ehrlich Tumor/pathology , Female , Luteolin/therapeutic use , Mice , Radiation Tolerance/drug effects
9.
Integr Cancer Ther ; 19: 1534735420944476, 2020.
Article in English | MEDLINE | ID: mdl-32735464

ABSTRACT

Pathological angiogenesis and apoptosis evasion are common hallmarks of cancer. The present work was an endeavor to evaluate the influence of bee venom (BV) or its major constituent melittin (MEL) as antiapoptotic and angiogenic regulator modifier on the tumor growth and the cell sensitivity to ionizing radiation targeting the improvement of cancer therapeutic protocols. BV (0.56 mg/kg/day) and MEL (500 µg/kg body weight/day) were injected intraperitoneally to mice bearing 1 cm3 solid tumor of Ehrlich ascites carcinoma (EAC) for 21 consecutive days. Mice were whole-body exposed to 1 Gray (Gy) of γ-radiation (2 fractionated doses). Treatment with BV or MEL markedly suppresses the proliferation of tumor in EAC mice. The concentrations of m-RNA for angiogenic factors (TNF-α, VEGF) as well as MMPs 2 and 9 activities and NO concentration were significantly decreased, combined with improvements in apoptotic regulators (caspase-3 activity) and normal cells redox tone (catalase and free radicals content) compared with EAC mice. Moreover, the histopathological investigation confirms the improvement exerted by BV or MEL in the EAC mice group or EAC + R group. Exposure to γ-radiation sustained the modulatory effect of BV on tumor when compared with EAC + BV mice. Convincingly, the role of BV or MEL as a natural antiangiogenic in the biological sequelae after radiation exposure is verified. Hence, BV and its major constituent MEL might represent a potential therapeutic strategy for increasing the radiation response of solid tumors.


Subject(s)
Bee Venoms , Carcinoma, Ehrlich Tumor , Carcinoma , Animals , Apoptosis , Bee Venoms/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Melitten/pharmacology , Mice , Neovascularization, Pathologic/drug therapy
10.
Tumour Biol ; 39(10): 1010428317728480, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29022496

ABSTRACT

Considerable attention has been paid to the introduction of novel naturally occurring plant-derived radiosensitizer compounds in order to augment the radiation efficacy and improve the treatment outcome of different tumors. This study was therefore undertaken to evaluate the antitumor, antiangiogeneic, and synergistic radiosensitizing effects of apigenin, a dietary flavonoid, and/or cryptotanshinone, a terpenoid isolated from the roots of Salvia miltiorrhiza, against the growth of solid Ehrlich carcinoma in female mice. Apigenin (50 mg/kg body weight) and/or cryptotanshinone (40 mg/kg body weight) was intraperitoneally (i.p.) injected into non-irradiated or γ-irradiated (6.5 Gy whole-body γ-irradiation) solid Ehrlich carcinoma-bearing mice for 30 consecutive days. Investigations included molecular targets involved in proliferation, inflammation, angiogenesis, and tumor invasiveness. Treatment with apigenin and/or cryptotanshinone significantly suppressed the growth of solid Ehrlich carcinoma tumors and demonstrated a synergistic radiosensitizing efficacy together with γ-irradiation. These effects were achieved through downregulating the expression of angiogenic and lymphangiogenic regulators, including signal transducer and activator of transcription 3, vascular endothelial growth factor C, and tumor necrosis factor alpha, suppressing matrix metalloproteinase-2 and -9 activities, which play a key role in tumor invasion and metastasis, and enhancing apoptosis via inducing cleaved caspase-3 and granzyme B levels. Histological findings of solid Ehrlich carcinoma tumors verified the recorded data. In conclusion, a synergistic radiosensitizing efficacy for apigenin and cryptotanshinone was demonstrated against Ehrlich carcinoma in the current in vivo murine model, representing therefore a potential therapeutic strategy for increasing the radiation response of solid tumors.


Subject(s)
Apigenin/administration & dosage , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Radiation-Sensitizing Agents/administration & dosage , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Carcinoma, Ehrlich Tumor/pathology , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Disease Models, Animal , Female , Gamma Rays , Humans , Mice , Phenanthrenes/administration & dosage , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...