Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome ; 57(3): 145-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24884690

ABSTRACT

The wild olive distribution extends from the Mediterranean region to south Asia and Austral Africa. The species is also invasive, particularly in Australia. Here, we investigated the sequence variation at five nuclear single-copy genes in 41 native and invasive accessions of the Mediterranean and African olive subspecies. The nucleotide diversity was assessed and the phylogenetic relationships between alleles were depicted with haplotype networks. A Bayesian clustering method (STRUCTURE) was applied to identify the main gene pools. We found an average of 18.4 alleles per locus. Native Mediterranean and African olives only share one allele, which testifies for ancient admixture on the Red Sea hills. The presence of divergent alleles in the Mediterranean olive, as well as the identification of two main genetic clusters, suggests a complex origin with two highly differentiated gene pools from the eastern and western Mediterranean that recently admixed. In the invasive range, relatively high nucleotide diversity is observed as a consequence of the introduction of alleles from two subspecies. Our data confirm that four invasive individuals are early-generation hybrids. Finally, the utility of single-copy gene sequences in olive population genomic and phylogenetic studies is briefly discussed.


Subject(s)
Genes, Plant , Olea/genetics , Polymorphism, Genetic , Base Sequence , Gene Pool , Haplotypes , Hybridization, Genetic , Molecular Sequence Data , Phylogeography
2.
Ann Bot ; 112(7): 1293-302, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013386

ABSTRACT

BACKGROUND AND AIMS: The olive (Olea europaea subsp. europaea) was domesticated in the Mediterranean area but its wild relatives are distributed over three continents, from the Mediterranean basin to South Africa and south-western Asia. Recent studies suggested that this crop originated in the Levant while a secondary diversification occurred in most westward areas. A possible contribution of the Saharan subspecies (subsp. laperrinei) has been highlighted, but the data available were too limited to draw definite conclusions. Here, patterns of genetic differentiation in the Mediterranean and Saharan olives are analysed to test for recent admixture between these taxa. METHODS: Nuclear microsatellite and plastid DNA (ptDNA) data were compiled from previous studies and completed for a sample of 470 cultivars, 390 wild Mediterranean trees and 270 Saharan olives. A network was reconstructed for the ptDNA haplotypes, while a Bayesian clustering method was applied to identify the main gene pools in the data set and then simulate and test for early generations of admixture between Mediterranean and Saharan olives. KEY RESULTS: Four lineages of ptDNA haplotypes are recognized: three from the Mediterranean basin and one from the Sahara. Only one haplotype, primarily distributed in the Sahara, is shared between laperrinei and europaea. This haplotype is detected once in 'Dhokar', a cultivar from the Maghreb. Nuclear microsatellites show geographic patterns of genetic differentiation in the Mediterranean olive that reflect the primary origins of cultivars in the Levant, and indicate a high genetic differentiation between europaea and laperrinei. No first-generation hybrid between europaea and laperrinei is detected, but recent, reciprocal admixture between Mediterranean and Saharan subspecies is found in a few accessions, including 'Dhokar'. CONCLUSIONS: This study reports for the first time admixture between Mediterranean and Saharan olives. Although its contribution remains limited, Laperrine's olive has been involved in the diversification of cultivated olives.


Subject(s)
Gene Pool , Geography , Olea/genetics , Africa, Northern , Alleles , Bayes Theorem , Cell Nucleus/genetics , DNA, Chloroplast/genetics , Genetic Variation , Genetics, Population , Haplotypes/genetics , Mediterranean Region , Microsatellite Repeats/genetics , Models, Genetic , Multigene Family/genetics
3.
Proc Biol Sci ; 280(1756): 20122833, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23390107

ABSTRACT

The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.


Subject(s)
Genetic Variation , Olea/physiology , Agriculture , Bayes Theorem , Cyprus , Haplotypes , Mediterranean Region , Middle East , Olea/genetics , Phylogeography , Plastids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...