Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J AOAC Int ; 91(2): 299-310, 2008.
Article in English | MEDLINE | ID: mdl-18476341

ABSTRACT

Ratio subtraction and isosbestic point methods are 2 innovating spectrophotometric methods used to determine vincamine in the presence of its acid degradation product and a mixture of cinnarizine (CN) and nicergoline (NIC). Linear correlations were obtained in the concentration range from 8-40 microg/mL for vincamine (I), 6-22 microg/mL for CN (II), and 6-36 microg/mL for NIC (III), with mean accuracies 99.72 +/- 0.917% for I, 99.91 +/- 0.703% for II, and 99.58 +/- 0.847 and 99.83 +/- 1.039% for III. The ratio subtraction method was utilized for the analysis of laboratory-prepared mixtures containing different ratios of vincamine and its degradation product, and it was valid in the presence of up to 80% degradation product. CN and NIC in synthetic mixtures were analyzed by the 2 proposed methods with the total content of the mixture determined at their respective isosbestic points of 270.2 and 235.8 nm, and the content of CN was determined by the ratio subtraction method. The proposed method was validated and found to be suitable as a stability-indicating assay method for vincamine in pharmaceutical formulations. The standard addition technique was applied to validate the results and to ensure the specificity of the proposed methods.


Subject(s)
Cinnarizine/analysis , Nicergoline/analysis , Spectrophotometry/methods , Vincamine/analysis , Drug Stability , Vincamine/chemistry
2.
J Pharm Biomed Anal ; 38(1): 72-8, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15907622

ABSTRACT

Three different stability indicating assay methods are developed and validated for determination of vincamine in the presence of its degradation product (vincaminic acid). The first method is based on the derivative ratio zero crossing spectrophotometric technique using 0.1 N hydrochloric acid as a solvent. In the second method, measurements are based on spectro-densitometric technique using high performance thin-layer chromatography (HPTLC) plates with a developing system consisting of methanol-chloroform-ethyl acetate (2:1:1, v/v/v). The third method depends on high-performance liquid chromatography (HPLC). Separation of vincamine from vincaminic acid using Lichrocart RP-18 column (250 mm x 4.6 mm i.d.) with a mobile phase consisting of acetonitrile-ammonium carbonate (0.01 M) (7:3, v/v) is achieved. The methods showed high sensitivity with good linearity over the concentration ranges of 12 to 48 microg ml-1, 3 to 17 microg/spot, and 2 to 20 microg ml-1 for derivative spectrophotometry, spectro-densitometry and HPLC methods, respectively. The developed methods were successfully applied to the analysis of pharmaceutical formulations containing vincamine with excellent recoveries.


Subject(s)
Vincamine/analysis , Chromatography, High Pressure Liquid , Densitometry , Drug Stability , Reproducibility of Results
3.
J AOAC Int ; 88(1): 80-6, 2005.
Article in English | MEDLINE | ID: mdl-15759729

ABSTRACT

A first-derivative spectrophotometric (1D) method and a derivative-ratio zero-crossing spectrophotometric (1DD) method were used to determine pyritinol dihydrochloride (I) in the presence of its precursor (II) and its degradation product (III) with 0.1N hydrochloric acid as a solvent. Linear relationships were obtained in the ranges of 6-22 microg/mL for the (1D) method and 6-20 microg/mL for the (1DD) method. By applying the proposed methods, it was possible to determine pyritinol dihydrochloride in its pure powdered form with an accuracy of 100.36 +/- 1.497% (n = 9) for the (1D) method and an accuracy of 99.92 +/- 1.172% (n = 8) for the (1DD) method. Laboratory-prepared mixtures containing different ratios of (I), (II), and (III) were analyzed, and the proposed methods were valid for concentrations of < or = 10% (II) and < or = 50% (III). The proposed methods were validated and found to be suitable as stability-indicating assay methods for pyritinol in pharmaceutical formulations.


Subject(s)
Chemistry Techniques, Analytical/methods , Chlorides/analysis , Gas Chromatography-Mass Spectrometry/methods , Pharmaceutical Preparations/analysis , Pyrithioxin/analogs & derivatives , Pyrithioxin/analysis , Pyrithioxin/chemistry , Chlorides/chemistry , Chromatography, Gas , Dose-Response Relationship, Drug , Mass Spectrometry , Models, Chemical , Sensitivity and Specificity , Spectrophotometry , Time Factors , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...