Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(6): 2951-2965, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37146162

ABSTRACT

Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients. Multivariate data analysis and chemometrics were used to analyze the data in an unbiased way. First, observed changes in stability were primarily determined by the individual protein. Second, pH and ionic strength are the two most important factors determining the physical stability of proteins, where there exists a significant statistical interaction between protein and pH/ionic strength. Additionally, we developed prediction methods by partial least-squares regression. Colloidal stability indicators are important for prediction of real-time stability, while conformational stability indicators are important for prediction of stability under accelerated stress conditions at 40 °C. In order to predict real-time storage stability, protein-protein repulsion and the initial monomer fraction are the most important properties to monitor.


Subject(s)
Antibodies, Monoclonal , Chemometrics , Humans , Protein Stability , Antibodies, Monoclonal/chemistry , Protein Unfolding , Protein Conformation , Drug Stability
2.
Mol Pharm ; 17(2): 426-440, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31790599

ABSTRACT

Therapeutic protein candidates should exhibit favorable properties that render them suitable to become drugs. Nevertheless, there are no well-established guidelines for the efficient selection of proteinaceous molecules with desired features during early stage development. Such guidelines can emerge only from a large body of published research that employs orthogonal techniques to characterize therapeutic proteins in different formulations. In this work, we share a study on a diverse group of proteins, including their primary sequences, purity data, and computational and biophysical characterization at different pH and ionic strength. We report weak linear correlations between many of the biophysical parameters. We suggest that a stability comparison of diverse therapeutic protein candidates should be based on a computational and biophysical characterization in multiple formulation conditions, as the latter can largely determine whether a protein is above or below a certain stability threshold. We use the presented data set to calculate several stability risk scores obtained with an increasing level of analytical effort and show how they correlate with protein aggregation during storage. Our work highlights the importance of developing combined risk scores that can be used for early stage developability assessment. We suggest that such scores can have high prediction accuracy only when they are based on protein stability characterization in different solution conditions.


Subject(s)
Antibodies, Monoclonal/chemistry , Drug Discovery/methods , Immunoglobulin G/chemistry , Interferon alpha-2/chemistry , Protein Unfolding , Serum Albumin, Human/chemistry , Transferrin/chemistry , Amino Acid Sequence , Drug Storage , Humans , Hydrogen-Ion Concentration , Osmolar Concentration , Protein Aggregates , Protein Stability , Research Design , Solubility
3.
Pharm Res ; 34(6): 1152-1170, 2017 06.
Article in English | MEDLINE | ID: mdl-28342056

ABSTRACT

Bone morphogenetic proteins (BMPs) are responsible for bone formation during embryogenesis and bone regeneration and remodeling. The osteoinductive action of BMPs, especially BMP-2 and BMP-7, has led to their use in a range of insurmountable treatments where intervention is required for effective bone regeneration. Introduction of BMP products to the market, however, was not without reports of multiple complications and side effects. Aiming for optimization of the therapeutic efficacy and safety, efforts have been focused on improving the delivery of BMPs to lower the administered dose, localize the protein, and prolong its retention time at the site of action. A major challenge with these efforts is that the protein stability should be maintained. With this review we attempt to shed light on how the stability of BMPs can be affected in the formulation and delivery processes. We first provide a short overview of the current standing of the complications experienced with BMP products. We then discuss the different delivery parameters studied in association with BMPs, and their influence on the efficacy and safety of BMP treatments. In particular, the literature addressing the stability of BMPs and their possible interactions with components of the delivery system as well as their sensitivity to conditions of the formulation process is reviewed. In summary, recent developments in the fields of bioengineering and biopharmaceuticals suggest that a good understanding of the relationship between the formulation/delivery conditions and the stability of growth factors such as BMPs is a prerequisite for a safe and effective treatment.


Subject(s)
Bone Morphogenetic Proteins/administration & dosage , Bone Regeneration/drug effects , Drug Compounding/methods , Drug Delivery Systems/methods , Animals , Drug Liberation , Drug Stability , Humans , Polymers/chemistry , Signal Transduction , Tissue Engineering , Tissue Scaffolds/chemistry
4.
Eur J Pharm Biopharm ; 93: 339-45, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25936855

ABSTRACT

The purpose of this study was to investigate the formation and growth kinetics of complexes of proteins and oppositely charged polyelectrolytes. Equal volumes of IgG and dextran sulfate (DS) solutions, 0.01 mg/ml each in 10mM phosphate, pH 6.2, were mixed. At different time points, samples were taken and analyzed by nanoparticle tracking analysis (NTA), Micro-Flow Imaging (MFI) and size-exclusion chromatography (SEC). SEC showed a huge drop in monomer content (approximately 85%) already 2 min after mixing, while a very high nanoparticle (size up to 500 nm) concentration (ca. 9 × 10(8)/ml) was detected by NTA. The nanoparticle concentration gradually decreased over time, while the average particle size increased. After a lag time of about 1.5h, a steady increase in microparticles was measured by MFI. The microparticle concentration kept increasing up to about 1.5 × 10(6)/ml until it started to slightly decrease after 10h. The average size of the microparticles remained in the low-µm range (1-2 µm) with a slight increase and broadening of the size distribution in time. The experimental data could be fitted with Smoluchowski's perikinetic coagulation model, which was validated by studying particle growth kinetics in IgG:DS mixtures of different concentrations. In conclusion, the combination of NTA and MFI provided novel insight into the kinetics and mechanism of protein-polyelectrolyte complex formation.


Subject(s)
Dextran Sulfate/chemistry , Immunoglobulin G/chemistry , Microscopy/methods , Nanoparticles , Nanotechnology/methods , Technology, Pharmaceutical/methods , Buffers , Chromatography, Gel , Dextran Sulfate/metabolism , Hydrogen-Ion Concentration , Immunoglobulin G/metabolism , Kinetics , Models, Chemical , Particle Size , Protein Binding , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...