Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Appl Mater Interfaces ; 13(24): 28049-28056, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34106674

ABSTRACT

Perovskite-based semiconductors, such as methylammonium and cesium lead halides (MPbX3: M = CH3NH3+ or Cs+; X = I-, Br-, or Cl-), have attracted immense attention for several applications, including radiation detection, due to their excellent electronic and optical properties.1,2,3,4,5,6 In addition, the combination of perovskites with other materials enables unique device structures. For example, robust and reliable diodes result when combined with metal oxide semiconductors. This device can be used for detection of nonionizing and ionizing radiation. In this paper, we report a unique perovskite single-crystal-based neutron detector using a heterojunction diode based on single-crystal MAPbBr3 and gallium oxide (Ga2O3) thin film. The MAPbBr3/Ga2O3 diodes demonstrate a leakage current of ∼7 × 10-10 A/mm2, an on/off ratio of ∼102, an ideality factor of 1.41, and minimal hysteresis that enables alpha particle, gamma-ray, and neutron detection at a bias as low as (-5 V). Gamma discrimination is further improved by 85% by optimizing the thickness of the perovskite single crystal. The MAPbBr3/Ga2O3 diodes also demonstrate a neutron detection efficiency of ∼3.92% when combined with a 10B neutron conversion layer.

3.
ACS Appl Mater Interfaces ; 12(46): 51645-51653, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33167617

ABSTRACT

Two-dimensional (2D) semiconductors, such as transition-metal dichalcogenides (TMDs), have attracted immense interest due to their excellent electronic and optical properties. The combination of single and multilayered 2D TMDs coupled with either Si or II-VI semiconductors can result in robust and reliable photodetectors. In this paper, we report the deposition process of MoSe2-layered films using pulsed laser deposition (PLD) over areas of 20 cm2 with a tunable band gap. Raman and X-ray diffraction indicates crystalline and highly oriented layered MoSe2. X-ray photoelectron spectroscopy shows Mo and Se present in the first few layers of the film. Rutherford backscattering demonstrates the effect of O and C on the surface and film/substrate interface of the deposited films. Ultraviolet-visible spectroscopy, Kelvin probe, photoelectron spectroscopy, and electrical measurements are used to investigate the band diagram and electrical property dependence as a function of MoSe2 layers/thickness. As the MoSe2 thickness increases from 3.5 to 11.4 nm, the band gap decreases from 1.98 to 1.75 eV, the work function increases from 4.52 to 4.72 eV, the ionization energy increases from 5.71 to 5.77 eV, the sheet resistance decreases from 541 to 56.0 kΩ, the contact resistance decreases from 187 to 54.6 Ω·cm2, and the transfer length increases from 2.27 to 61.9 nm. Transmission electron microscopy (TEM) cross-sectional images demonstrate the layered structure of the MoSe2 with an average interlayer spacing of 0.68 nm. The fabricated MoSe2-Si photodiodes demonstrate a current on/off ratio of ∼2 × 104 orders of magnification and photocurrent generation with a 22.5 ns rise time and a 190.8 ns decay time, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...