Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19681, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36385257

ABSTRACT

In the current study, a vertical, 3D-heated plate is used to replicate the generation of heat energy and concentration into Prandtl liquid. We discuss how Dufour and Soret theories relate to the equations for concentration and energy. In order to see how effectively particles, interact with heat and a solvent, hybrid nanoparticles are used. It does away with the phenomena of viscous dissipation and changing magnetic fields. The motivation behind the developed study is to optimize solvent and heat storage uses in the biological and industrial domains. This article's major goal is to explore the aspects of thermal energy and mass transfer that influence how nanoparticles, hybrid nanoparticles, and 3D melting surface sheets behave. Variable thermal efficiency and variable mass transfer are combined. The system of generated PDEs (difference equations) includes the concentration, velocity, and heat energy equations. The numerical calculations are done for Silver (Ag), Molybdenum Disulfide (MoS2) nanoparticles with Ethylene glycol (C2H6O2) as the base fluid using a boundary layer approach to the mathematical formulation. The system of ODEs is formulated through transformations in order to find a solution. A Galerkin finite element algorithm (G-FEA) is adopted to analyze various aspects versus different parameters. It has been found that motion into hybrid nanoparticles is reduced by motion into nanoparticles. Additionally, differences in heat energy and solvent particle sizes are associated with modifications in magnetic, Dufour, Eckert, and Soret numbers. In contrast to hybrid nanostructures, the output of thermal energy is usually observed to be substantially higher. The magnetic field parameter decreases the particle velocity. In contradiction to the Eckert number, bouncy parameter, and magnetic parameter set values, the maximum quantity of heat energy is obtained. variable thermal conductivity's function. The 3D heated vertical surface convective heat transfer of nanofluids and hybrid nanofluids under the impact of a heat source, thermal radiation, and viscous dissipation has not yet been studied, as far as the authors are aware.

2.
Sci Rep ; 12(1): 20692, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36450738

ABSTRACT

The flow of a fluid across a revolving disc has several technical and industrial uses. Examples of rotating disc flows include centrifugal pumps, viscometers, rotors, fans, turbines, and spinning discs. An important technology with implications for numerous treatments utilized in numerous sectors is the use of hybrid nanofluids (HNFs) to accelerate current advancements. Through investigation of ternary nanoparticle impacts on heat transfer (HT) and liquid movement, the thermal properties of tri-HNFs were to be ascertained in this study. Hall current, thermal radiation, and heat dissipation have all been studied in relation to the use of flow-describing equations. The ternary HNFs under research are composed of the nanomolecules aluminum oxide (Al2O3), copper oxide (CuO), silver (Ag), and water (H2O). For a number of significant physical characteristics, the physical situation is represented utilizing the boundary layer investigation, which produces partial differential equations (PDEs). The rheology of the movement is extended and computed in a revolving setting under the assumption that the movement is caused by a rotatingfloppy. Before the solution was found using the finite difference method, complicated generated PDEs were transformed into corresponding ODEs (Keller Box method). A rise in the implicated influencing factors has numerous notable physical impacts that have been seen and recorded. The Keller Box method (KBM) approach is also delivered for simulating the determination of nonlinear system problems faced in developing liquid and supplementary algebraic dynamics domains. The rate of entropy formation rises as the magnetic field parameter and radiation parameter increase. Entropy production rate decreases as the Brinkman number and Hall current parameter become more enriched. The thermal efficiency of ternary HNFs compared to conventional HNFs losses to a low of 4.8% and peaks to 5.2%.

3.
Sci Rep ; 12(1): 14679, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038606

ABSTRACT

The study of hydromagnetic mixed convection flow of viscoelastic fluid caused by a vertical stretched surface is presented in this paper. According to this theory, the stretching velocity varies as a power function of the displacement from the slot. The conservation of energy equation includes thermal radiation and viscous dissipation to support the mechanical operations of the heat transfer mechanism. Through the use of an adequate and sufficient similarity transformation for a nonlinearly stretching sheet, the boundary layer equations governing the flow issue are converted into a set of ordinary differential equations. The Keller box technique is then used to numerically solve the altered equations. To comprehend the physical circumstances of stretching sheets for variations of the governing parameters, numerical simulations are made. The influence and characteristic behaviours of physical parameters were portrayed graphically for the velocity field and temperature distributions. The research shows that the impact of the applied magnetic parameter is to improve the distribution of the viscoelastic fluid temperature and reduce the temperature gradient at the border. Temperature distribution and the associated thermal layer are shown to have improved because of radiative and viscous dissipation characteristics. Radiation causes additional heat to be produced in liquid, raising the fluid's temperature. It was also found that higher velocities are noticed in viscoelastic fluid as compared with Newtonian fluid (i.e., when K = 0).

SELECTION OF CITATIONS
SEARCH DETAIL
...