Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neth Heart J ; 30(4): 212-226, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33052577

ABSTRACT

BACKGROUND: The integration of computed tomography (CT)-derived left ventricular outflow tract area into the echocardiography-derived continuity equation results in the reclassification of a significant proportion of patients with severe aortic stenosis (AS) into moderate AS based on aortic valve area indexed to body surface area determined by fusion imaging (fusion AVAi). The aim of this study was to evaluate AS severity by a fusion imaging technique in patients with low-gradient AS and to compare the clinical impact of reclassified moderate AS versus severe AS. METHODS: We included 359 consecutive patients who underwent transcatheter aortic valve implantation for low-gradient, severe AS at two academic institutions and created a joint database. The primary endpoint was a composite of all-cause mortality and rehospitalisations for heart failure at 1 year. RESULTS: Overall, 35% of the population (n = 126) were reclassified to moderate AS [median fusion AVAi 0.70 (interquartile range, IQR 0.65-0.80) cm2/m2] and severe AS was retained as the classification in 65% [median fusion AVAi 0.49 (IQR 0.43-0.54) cm2/m2]. Lower body mass index, higher logistic EuroSCORE and larger aortic dimensions characterised patients reclassified to moderate AS. Overall, 57% of patients had a left ventricular ejection fraction (LVEF) <50%. Clinical outcome was similar in patients with reclassified moderate or severe AS. Among patients reclassified to moderate AS, non-cardiac mortality was higher in those with LVEF <50% than in those with LVEF ≥50% (log-rank p = 0.029). CONCLUSIONS: The integration of CT and transthoracic echocardiography to obtain fusion AVAi led to the reclassification of one third of patients with low-gradient AS to moderate AS. Reclassification did not affect clinical outcome, although patients reclassified to moderate AS with a LVEF <50% had worse outcomes owing to excess non-cardiac mortality.

2.
Neth Heart J ; 30(3): 140-148, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33914259

ABSTRACT

OBJECTIVE: To compare early clinical outcomes after transcatheter aortic valve implantation (TAVI) with three consecutive generations of self-expanding valves (SEVs). METHODS: Clinical endpoints of consecutive patients who underwent TAVI with CoreValve, Evolut R or Evolut PRO were included in a prospective database. RESULTS: TAVI was performed with CoreValve (n = 116), Evolut R (n = 160) or Evolut PRO (n = 92). Evolut R and Evolut PRO showed a tendency towards lower permanent pacemaker implantation (PPI) rates compared to CoreValve (CoreValve 27% vs Evolut R 16% vs Evolut PRO 18%, p = 0.091). By multivariable regression analysis CoreValve had a significantly higher risk for PPI (odds ratio (OR) 2.79, 95% confidence interval (CI) 1.31-5.94, p = 0.008) compared to Evolut R, while Evolut R and PRO were similar. Severe paravalvular leakage (PVL) occurred only with CoreValve, but no significant difference was observed in moderate PVL (10% vs 8% vs 6%, p = 0.49). CoreValve had a tendency towards a higher risk for more-than-mild PVL as compared with the Evolut platform (R + PRO) (OR 2.46, 95% CI 0.98-6.16, p = 0.055). No significant differences in all-cause mortality (7% vs 4% vs 1%, p = 0.10), stroke (6% vs 3% vs 2%, p = 0.21) or major vascular complications (10% vs 12% vs 4%, p = 0.14) were observed. CONCLUSIONS: TAVI with self-expanding valves was safe, and device iterations may result in a lower need for PPI. More-than-mild PVL seemed to occur less often with repositionable technology.

3.
Neth Heart J ; 25(2): 100-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27888494

ABSTRACT

Transcatheter aortic valve implantation is increasingly used to treat patients with severe aortic stenosis who are at increased risk for surgical aortic valve replacement and is projected to be the preferred treatment modality. As patient selection and operator experience have improved, it is hypothesised that device-host interactions will play a more dominant role in outcome. This, in combination with the increasing number of valve types and sizes, confronts the physician with the dilemma to choose the valve that best fits the individual patient. This necessitates the availability of pre-procedural computer simulation that is based upon the integration of the patient-specific anatomy, the physical and (bio)mechanical properties of the valve and recipient anatomy derived from in-vitro experiments. The objective of this paper is to present such a model and illustrate its potential clinical utility via a few case studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...