Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Int Med Res ; 52(5): 3000605241254330, 2024 May.
Article in English | MEDLINE | ID: mdl-38779976

ABSTRACT

Heart failure is a complex clinical syndrome that is one of the causes of high mortality worldwide. Additionally, healthcare systems around the world are also being burdened by the aging population and subsequently, increasing estimates of patients with heart failure. As a result, it is crucial to determine novel ways to reduce the healthcare costs, rate of hospitalizations and mortality. In this regard, clinical biomarkers play a very important role in stratifying risk, determining prognosis or diagnosis and monitoring patient responses to therapy. This narrative review discusses the wide spectrum of clinical biomarkers, novel inventions of new techniques, their advantages and limitations as well as applications. As heart failure rates increase, cost-effective diagnostic tools such as B-type natriuretic peptide and N-terminal pro b-type natriuretic peptide are crucial, with emerging markers like neprilysin and cardiac imaging showing promise, though larger studies are needed to confirm their effectiveness compared with traditional markers.


Subject(s)
Biomarkers , Heart Failure , Natriuretic Peptide, Brain , Humans , Heart Failure/diagnosis , Heart Failure/blood , Biomarkers/blood , Prognosis , Natriuretic Peptide, Brain/blood , Neprilysin/metabolism , Peptide Fragments/blood
2.
Placenta ; 137: 49-58, 2023 06.
Article in English | MEDLINE | ID: mdl-37071955

ABSTRACT

INTRODUCTION: Preeclampsia (PE) affects 2-8% of all pregnancies, and is the leading cause of maternal and fetal morbidity and mortality. We reported on pathophysiological changes in placenta mesenchymal stem cells (P-MSCs) in PE. P-MSCs can be isolated from different layers of the placenta at the interface between the fetus and mother. The ability of MSCs from other sources to be immune licensed as immune suppressor cells indicated that P-MSCs could mitigate fetal rejection. Acetylsalicylic acid (aspirin) is indicated for treating PE. Indeed, low-dose aspirin is recommended to prevent PE in high risk patients. METHODS: We conducted robust computational analyses to study changes in gene expression in P-MSCs from PE and healthy term pregnancies as compared with PE-MSCs treated with low dose acetyl salicylic acid (LDA). Confocal microscopy studied phospho-H2AX levels in P-MSCs. RESULTS: We identified changes in >400 genes with LDA, similar to levels of healthy pregnancy. The top canonical pathways that incorporate these genes were linked to DNA repair damage - Basic excision repair (BER), Nucleotide excision repair (NER) and DNA replication. A role for the sumoylation (SUMO) pathway, which could regulate gene expression and protein stabilization was significant although reduced as compared to BER and NER pathways. Labeling for phopho-H2AX indicated no evidence of double strand break in PE P-MSCs. DISCUSSION: The overlapping of key genes within each pathway suggested a major role for LDA in the epigenetic landscape of PE P-MSCs. Overall, this study showed a new insight into how LDA reset the P-MSCs in PE subjects around the DNA.


Subject(s)
Mesenchymal Stem Cells , Pre-Eclampsia , Humans , Female , Pregnancy , Aspirin/pharmacology , Aspirin/therapeutic use , Pre-Eclampsia/metabolism , Placenta/metabolism , Epigenesis, Genetic , Mesenchymal Stem Cells/metabolism , Salicylic Acid/metabolism
3.
Aging (Albany NY) ; 15(9): 3230-3248, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36996499

ABSTRACT

Breast cancer (BC) stem cells (CSCs) resist treatment and can exist as dormant cells in tissues such as the bone marrow (BM). Years before clinical diagnosis, BC cells (BCCs) could migrate from the primary site where the BM niche cells facilitate dedifferentiation into CSCs. Additionally, dedifferentiation could occur by cell autonomous methods. Here we studied the role of Msi 1, a RNA-binding protein, Musashi I (Msi 1). We also analyzed its relationship with the T-cell inhibitory molecule programmed death-ligand 1 (PD-L1) in CSCs. PD-L1 is an immune checkpoint that is a target in immune therapy for cancers. Msi 1 can support BCC growth through stabilization of oncogenic transcripts and modulation of stem cell-related gene expression. We reported on a role for Msi 1 to maintain CSCs. This seemed to occur by the differentiation of CSCs to more matured BCCs. This correlated with increased transition from cycling quiescence and reduced expression of stem cell-linked genes. CSCs co-expressed Msi 1 and PD-L1. Msi 1 knockdown led to a significant decrease in CSCs with undetectable PD-L1. This study has implications for Msi 1 as a therapeutic target, in combination with immune checkpoint inhibitor. Such treatment could also prevent dedifferentiation of breast cancer to CSCs, and to reverse tumor dormancy. The proposed combined treatment might be appropriate for other solid tumors.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , Humans , Female , B7-H1 Antigen/genetics , Bone Marrow/pathology , Breast Neoplasms/pathology
4.
Stem Cell Rev Rep ; 18(8): 3066-3082, 2022 12.
Article in English | MEDLINE | ID: mdl-35908144

ABSTRACT

Preeclampsia (PE) is a pregnancy-specific disease, occurring in ~ 2-10% of all pregnancies. PE is associated with increased maternal and perinatal morbidity and mortality, hypertension, proteinuria, disrupted artery remodeling, placental ischemia and reperfusion, and inflammation. The mechanism of PE pathogenesis remains unresolved explaining limited treatment. Aspirin is used to reduce the risk of developing PE. This study investigated aspirin's effect on PE-derived placenta mesenchymal stem cells (P-MSCs). P-MSCs from chorionic membrane (CM), chorionic villi, membranes from the maternal and amniotic regions, and umbilical cord were similar in morphology, phenotype and multipotency. Since CM-derived P-MSCs could undergo long-term passages, the experimental studies were conducted with this source of P-MSCs. Aspirin (1 mM) induced significant functional and transcriptomic changes in PE-derived P-MSCs, similar to healthy P-MSCs. These include cell cycle quiescence, improved angiogenic pathways, and immune suppressor potential. The latter indicated that aspirin could induce an indirect program to mitigate PE-associated inflammation. As a mediator of activating the DNA repair program, aspirin increased p53, and upregulated genes within the basic excision repair pathway. The robust ability for P-MSCs to maintain its function with high dose aspirin contrasted bone marrow (M) MSCs, which differentiated with eventual senescence/aging with 100 fold less aspirin. This difference cautions how data from other MSC sources are extrapolated to evaluate PE pathogenesis. Dysfunction among P-MSCs in PE involves a network of multiple pathways that can be restored to an almost healthy functional P-MSC. The findings could lead to targeted treatment for PE.


Subject(s)
Mesenchymal Stem Cells , Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Placenta , Transcriptome/genetics , Aspirin/pharmacology , Aspirin/metabolism , Stem Cells , Inflammation/metabolism
5.
Aging (Albany NY) ; 13(21): 23981-24016, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34762598

ABSTRACT

This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.


Subject(s)
Bone Marrow Cells , Cell-Derived Microparticles , Cellular Senescence/physiology , Hematopoiesis/physiology , Adult , Aged , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/physiology , Female , Fetal Blood/cytology , Humans , Male , MicroRNAs/metabolism , Middle Aged , Secretome , Young Adult
6.
Life Sci Alliance ; 4(7)2021 07.
Article in English | MEDLINE | ID: mdl-34078741

ABSTRACT

The challenge for treating breast cancer (BC) is partly due to long-term dormancy driven by cancer stem cells (CSCs) capable of evading immune response and resist chemotherapy. BC cells show preference for the BM, resulting in poor prognosis. CSCs use connexin 43 (Cx43) to form gap junctional intercellular communication with BM niche cells, fibroblasts, and mesenchymal stem cells (MSCs). However, Cx43 is an unlikely target to reverse BC dormancy because of its role as a hematopoietic regulator. We found N-cadherin (CDH2) and its associated pathways as potential drug targets. CDH2, highly expressed in CSCs, interacts intracellularly with Cx43, colocalizes with Cx43 in BC cells within BM biopsies of patients, and is required for Cx43-mediated gap junctional intercellular communication with BM niche cells. Notably, CDH2 and anti-apoptotic pathways maintained BC dormancy. We thereby propose these pathways as potential pharmacological targets to prevent dormancy and chemosensitize resistant CSCs.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/metabolism , Cadherins/metabolism , Connexin 43/metabolism , Antigens, CD/genetics , Bone Marrow/metabolism , Cadherins/genetics , Cadherins/physiology , Connexin 43/genetics , Drug Resistance, Neoplasm/physiology , Female , Gap Junctions/metabolism , Gap Junctions/pathology , Humans , Mesenchymal Stem Cells/metabolism , Neoplasm Metastasis/pathology , Neoplastic Stem Cells/metabolism , Tumor Escape/physiology
7.
Cancer Res ; 81(6): 1567-1582, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33500249

ABSTRACT

In the bone marrow (BM), breast cancer cells (BCC) can survive in dormancy for decades as cancer stem cells (CSC), resurging as tertiary metastasis. The endosteal region where BCCs exist as CSCs poses a challenge to target them, mostly due to the coexistence of endogenous hematopoietic stem cells. This study addresses the early period of dormancy when BCCs enter BM at the perivascular region to begin the transition into CSCs, which we propose as the final step in dormancy. A two-step process comprises the Wnt-ß-catenin pathway mediating BCC dedifferentiation into CSCs at the BM perivascular niche. At this site, BCCs responded to two types of mesenchymal stem cell (MSC)-released extracellular vesicles (EV) that may include exosomes. Early released EVs began the transition into cycling quiescence, DNA repair, and reorganization into distinct BCC subsets. After contact with breast cancer, the content of EVs changed (primed) to complete dedifferentiation into a more homogeneous population with CSC properties. BCC progenitors (Oct4alo), which are distant from CSCs in a hierarchical stratification, were sensitive to MSC EVs. Despite CSC function, Oct4alo BCCs expressed multipotent pathways similar to CSCs. Oct4alo BCCs dedifferentiated and colocalized with MSCs (murine and human BM) in vivo. Overall, these findings elucidate a mechanism of early dormancy at the BM perivascular region and provide evidence of epigenome reorganization as a potential new therapy for breast cancer. SIGNIFICANCE: These findings describe how the initial process of dormancy and dedifferentiation of breast cancer cells at the bone marrow perivascular niche requires mesenchymal stem cell-derived exosomes, indicating a potential target for therapeutic intervention.


Subject(s)
Bone Marrow/pathology , Breast Neoplasms/pathology , Cell Dedifferentiation , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/pathology , Adolescent , Adult , Animals , Biopsy , DNA Repair , Exosomes/metabolism , Female , Healthy Volunteers , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Neoplastic Stem Cells/metabolism , Wnt Signaling Pathway , Young Adult
8.
Cancer Lett ; 488: 9-17, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32479768

ABSTRACT

Breast cancer (BC) remains a clinical challenge despite improved treatments and public awareness to ensure early diagnosis. A major issue is the ability of BC cells (BCCs) to survive as dormant cancer cells in the bone marrow (BM), resulting in the cancer surviving for decades with the potential to resurge as metastatic cancer. The experimental evidence indicates similarity between dormant BCCs and other stem cells, resulting in the preponderance of data to show dormant BCCs being cancer stem cells (CSCs). The BM niche and their secretome support BCC dormancy. Lacking in the literature is a comprehensive research to describe how the hypoxic environment within the BM may influence the behavior of BCCs. This information is relevant to understand the prognosis of BC in young and aged individuals whose oxygen levels differ in BM. This review discusses the changing information on vascularity in different regions of the BM and the impact on endogenous hematopoietic stem cells (HSCs). This review highlights the necessary information to provide insights on vascularity of different BM regions on the behavior of BCCs, in particular a dormant phase. For instance, how the transcription factor HIF1-α (hypoxia-inducible factor 1 alpha), functioning as first responder under hypoxic conditions, affects the expression of specific gene networks involved in energy metabolism, cell survival, tumor invasion and angiogenesis. This enables cell fate transition and facilitates tumor heterogeneity, which in turn favors tumor progression and resistance to anticancer treatments Thus, HIF1-α could be a potential target for cancer treatment. This review describes epigenetic mechanisms involved in hypoxic responses during cancer dormancy in the bone marrow. The varied hypoxic environment in the BM is relevant to understand the complex process of the aging bone marrow for insights on breast cancer outcome between the young and aged.


Subject(s)
Bone Marrow Neoplasms/secondary , Breast Neoplasms/pathology , Cell Hypoxia/physiology , Neoplastic Stem Cells/pathology , Tumor Microenvironment/physiology , Animals , Bone Marrow/pathology , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...