Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Exp Toxicol ; 42: 9603271231180849, 2023.
Article in English | MEDLINE | ID: mdl-37294601

ABSTRACT

Treatment strategies encompass synchronization of more than one therapy with specific dependence on zeroing side effects of natural products that might represent a niche in the continuous struggle against cancer. Thus, this study aimed at assessing the role of Withania somnifera; WS (Ashwagandha) in forcing MCF7 or MDA-MB 231 irradiated breast cancer cells to outweigh the route of programmed cell death. We check to what extent SIRT1-BCL2/Bax signaling pathway was interrelated to form apoptotic cancer cells. MDA or MCF7 cells are categorized into four groups: gp1, Control (C): MDA-MB-231 or MCF7 cells not treated with WS or exposed to γ-rays, gp2 (WS): cells challenged with WS for MDA-MB-231 or MCF7 cells respectively, gp3: irradiated (R) MDA-MB-231 or MCF7 cells exposed to γ-rays (4 Gy; one shot) and gp4 WS and irradiated (WS + R): cells challenged with WS as in gp2 and exposed to gamma rays as in gp3. The results revealed that, WS established IC50 equivalent to 4897.8 µg/ml in MDA-MB-231 cells or equivalent to 3801.9 µg/ml in MCF7 cells. The flowcytometric analysis (Annexin V and cell cycle) showed that WS induces apoptosis at pre-G phase and induces cell arrest at G2/M and preG1 phases for MDA-MB-231 and at the preG1 for MCF7 cells. Furthermore, the WS + R group of cells (MDA-MB-231 and MCF7) showed significant increases in the expression of SIRT1, and BCL2 and a decrease in BAX compared with WS or R group. It could be concluded that WS has an anti-proliferative action on MDA-MB-231 and MCF7 cells because of its capability to enhance apoptosis.


Subject(s)
Breast Neoplasms , Withania , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Breast Neoplasms/metabolism , bcl-2-Associated X Protein , Withania/metabolism , Sirtuin 1/metabolism , MCF-7 Cells , Gamma Rays , Apoptosis , Signal Transduction , Cell Line, Tumor , Cell Proliferation , Proto-Oncogene Proteins c-bcl-2/metabolism
2.
Curr Cancer Drug Targets ; 23(2): 118-144, 2023.
Article in English | MEDLINE | ID: mdl-35975846

ABSTRACT

BACKGROUND: Breast cancer (BC) has a complex and heterogeneous etiology, and the emergence of resistance to conventional chemo-and radiotherapy results in unsatisfactory outcomes during BC treatment. Targeted nanomedicines have tremendous therapeutic potential in BC treatment over their free drug counterparts. OBJECTIVE: Hence, this study aimed to evaluate the newly fabricated pH-sensitive multifunctional FAHA- Amygdalin@Fe2O3 nano-core-shell composite (AF nanocomposite) and/or γ-radiation for effective localized BC therapy. METHODS: The physicochemical properties of nanoparticles were examined, including stability, selectivity, responsive release to pH, cellular uptake, and anticancer efficacy. MCF-7 and MDA-MB-231 cells were treated with AF at the determined IC50 doses and/or exposed to γ-irradiation (RT) or were kept untreated as controls. The antitumor efficacy of AF was proposed via assessing anti-proliferative effects, cell cycle distribution, apoptosis, and determination of the oncogenic effectors. RESULTS: In a bio-relevant medium, AF nanoparticles demonstrated extended-release characteristics that were amenable to acidic pH and showed apparent selectivity towards BC cells. The bioassays revealed that the HA and FA-functionalized AF markedly hindered cancer cell growth and enhanced radiotherapy (RT) through inducing cell cycle arrest (pre-G1 and G2/M) and increasing apoptosis, as well as reducing the tumorigenicity of BCs by inhibiting Silent information regulation factor 1 (SIRT1) and restoring p53 expression, deactivating the Yes-associated protein (YAP)/ Transcriptional coactivator with PDZ-binding motif (TAZ) signaling axis, and interfering with the tumor growth factor- ß(TGF- ß)/SMAD3 and HIF-1α/VEGF signaling hub while up-regulating SMAD7 protein expression. CONCLUSION: Collectively, the novel AF alone or prior RT abrogated BC tumorigenicity.


Subject(s)
Amygdalin , Breast Neoplasms , Humans , Female , Tumor Suppressor Protein p53/metabolism , Amygdalin/pharmacology , MCF-7 Cells , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Signal Transduction
3.
J Radiat Res ; 62(4): 600-617, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33929015

ABSTRACT

Apelin-13 and APJ are implicated in different key physiological processes. This work aims at exploring the radioprotective effect of fucoxanthin (FX) on γ-radiation (RAD)-induced changes in the apelin-13/APJ pathway, which causes damage in the liver, kidney, lung and spleen of mice. Mice were administered FX (10 mg kg-1 day-1, i.p) and exposed to γ-radiation (2.5 Gy week-1) for four consecutive weeks. The treatment of irradiated mice by FX resulted in a significant amendment in protein expression of the apelin-13/APJ/NF-κB signalling pathway concurrently with reduced hypoxia (hypoxia-inducible factor-1α), suppressed oxidative stress marker (malondialdehyde), enhanced antioxidant defence mechanisms (reduced glutathione and glutathione peroxidase), a modulated inflammatory response [interleukin-6 (IL-6), monocyte chemoattractant protein-1, IL-10 and α-7-nicotinic acetylcholine receptor) and ameliorated angiogenic regulators [matrix metalloproteinase (MMP-2), MMP-9 and tissue inhibitor of metalloproteinase-1), as well as the tissue damage indicator (lactate dehydrogenase) in organ tissues. In addition, there were significant improvement in serum inflammatory markers tumour necrosis factor-α, IL-10, IL-1ß and C-reactive protein compared with irradiated mice. The histopathological investigation of the FX + RAD organ tissues support the biochemical findings where the improvements in the tissues' architecture were obvious when compared with those of RAD. FX was thus shown to have a noticeable radioprotective action mediated through its regulatory effect on the apelin-13/APJ/NF-κB signalling pathway attributed to its antioxidant and anti-inflammatory activity that was reflected in different physiological processes. It could be recommended to use FX in cases of radiation exposure to protect normal tissues.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Organ Specificity/radiation effects , Signal Transduction , Whole-Body Irradiation , Xanthophylls/pharmacology , Animals , Antioxidants/metabolism , Apelin Receptors/metabolism , Gamma Rays , Inflammation/pathology , Kidney/drug effects , Kidney/pathology , Kidney/radiation effects , L-Lactate Dehydrogenase/metabolism , Liver/drug effects , Liver/pathology , Liver/radiation effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , NF-kappa B/metabolism , Organ Specificity/drug effects , Oxidants/metabolism , Signal Transduction/drug effects , Tissue Inhibitor of Metalloproteinase-1/metabolism
4.
J Cancer Res Ther ; 16(6): 1506-1516, 2020.
Article in English | MEDLINE | ID: mdl-33342821

ABSTRACT

BACKGROUND: Cancer remains a major health issue and the second foremost root of morbidity worldwide behind cardiovascular diseases. Apoptosis had linked to the eradication of possibly malignant cells, hyperplasia, and tumor progression. OBJECTIVE: The present study is an endeavor to evaluate the influence of luteolin, a modifier to apoptotic regulator on the tumor growth and the tumor cell sensitivity to ionizing radiation in Ehrlich solid tumor-bearing mice (E). MATERIALS AND METHODS: Mice were immunized with Ehrlich carcinoma cells (2.5 × 106 cells/mouse), received consecutive equal doses of luteolin, 1.25 mg/mouse/day and exposed to 6.5 Gy of whole-body gamma irradiation (0.46 Gy/min). RESULTS: Luteolin markedly suppresses the developing of tumor in E mice group or mice which bearing tumor with exposure to radiation (E + R group) which has collimated with significant inhibition in protein expression of inflammatory molecules cyclooxygenase 2 and the concentration of (prostaglandin E2). Also, matrix metalloproteinase-2, 9 proteins concentrations significantly decreased with amelioration in apoptotic regulators (Caspase-3 and Granzyme-B activities). The expression of signal transducer and activator of transcription (STAT) and tumor necrosis factor-alpha genes meliorated significantly. Besides, the level of oxidant/antioxidant (reduced glutathione/malondialdehyde) markedly improved. Obviously, the most reduction of changes in all measured parameters has appeared in tumor bearing mice, injected with luteolin and exposed to gamma radiation (E + Luteolin + R group). CONCLUSION: It could be suggested that luteolin has a potential beneficial effect against cancer. This could be due to its ability on the induction of apoptosis, inhibition of inflammatory response, downregulation of angiogenic factors as well as increase sensitivity of tumor cells to gamma radiation.


Subject(s)
Carcinoma, Ehrlich Tumor/therapy , Chemoradiotherapy/methods , Gamma Rays/therapeutic use , Luteolin/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Carcinoma, Ehrlich Tumor/pathology , Female , Luteolin/therapeutic use , Mice , Radiation Tolerance/drug effects
5.
Tumour Biol ; 39(10): 1010428317728480, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29022496

ABSTRACT

Considerable attention has been paid to the introduction of novel naturally occurring plant-derived radiosensitizer compounds in order to augment the radiation efficacy and improve the treatment outcome of different tumors. This study was therefore undertaken to evaluate the antitumor, antiangiogeneic, and synergistic radiosensitizing effects of apigenin, a dietary flavonoid, and/or cryptotanshinone, a terpenoid isolated from the roots of Salvia miltiorrhiza, against the growth of solid Ehrlich carcinoma in female mice. Apigenin (50 mg/kg body weight) and/or cryptotanshinone (40 mg/kg body weight) was intraperitoneally (i.p.) injected into non-irradiated or γ-irradiated (6.5 Gy whole-body γ-irradiation) solid Ehrlich carcinoma-bearing mice for 30 consecutive days. Investigations included molecular targets involved in proliferation, inflammation, angiogenesis, and tumor invasiveness. Treatment with apigenin and/or cryptotanshinone significantly suppressed the growth of solid Ehrlich carcinoma tumors and demonstrated a synergistic radiosensitizing efficacy together with γ-irradiation. These effects were achieved through downregulating the expression of angiogenic and lymphangiogenic regulators, including signal transducer and activator of transcription 3, vascular endothelial growth factor C, and tumor necrosis factor alpha, suppressing matrix metalloproteinase-2 and -9 activities, which play a key role in tumor invasion and metastasis, and enhancing apoptosis via inducing cleaved caspase-3 and granzyme B levels. Histological findings of solid Ehrlich carcinoma tumors verified the recorded data. In conclusion, a synergistic radiosensitizing efficacy for apigenin and cryptotanshinone was demonstrated against Ehrlich carcinoma in the current in vivo murine model, representing therefore a potential therapeutic strategy for increasing the radiation response of solid tumors.


Subject(s)
Apigenin/administration & dosage , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Radiation-Sensitizing Agents/administration & dosage , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Carcinoma, Ehrlich Tumor/pathology , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Disease Models, Animal , Female , Gamma Rays , Humans , Mice , Phenanthrenes/administration & dosage , Whole-Body Irradiation
6.
N Am J Med Sci ; 3(8): 371-7, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22171245

ABSTRACT

BACKGROUND: Caspase-3 and granzyme B were claimed as apoptotic manipulative enzymes. AIMS: The present study was to determine the enzymes expression and activity in cancer and cancer immune therapeutic status and the possible association to cancer common pathological signs targeting the improvement of therapeutic conditions. MATERIAL AND METHODS: Mice were immunized with cell lyaste or cell lysate + CKI in the right thigh and challenged with live cells of ehrlich ascites carcinoma (EAC) in the left thigh. The expression and activity of both enzymes in the spleenocytes derived from different subjects (normal, EAC and cell lysate or cell lysate + CKI immunized mice) after cultured with EAC viable cells were determined by colorimetric assay and western blot analysis. In addition, the subjects DNA ladder and serum metalloproteases (MMP 2 and 9) zymography were observed. RESULTS: The experimental data revealed over expression of caspase3 and granzyme B in the groups of cell lysate or cell lysate + CKI immunized mice compared to control while down expression were recorded in the EAC subject. The over expression of the 2 enzymes were accompanied with increases in the activities of caspase3 and granzyme B, changes in DNA fragmentation and inhibition of metalloproteases. CONCLUSION: It could be suggested that, the parameter estimation within the present experimental framework could identify the efficiency of therapeutic vaccine protocols and elucidate the impact of CKI adjuvant with vaccines therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...