Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pediatr ; 31(4): 238-244, 2024 May.
Article in English | MEDLINE | ID: mdl-38679547

ABSTRACT

BACKGROUND: Recurrent genetic abnormalities affecting pivotal signaling pathways are the hallmark of childhood acute lymphoblastic leukemia (ALL). The identification of these aberrations remains clinically important. Therefore, we sought to determine the cytogenetic profile and the mutational status of TP53 and RAS genes among Moroccan childhood cases of ALL. METHODS: In total, 35 patients with childhood ALL were enrolled in the study. The diagnosis and treatment were established in the Pediatric Hematology and Oncology Center at the Children's Hospital of Rabat. Chromosome banding analysis and fluorescence in situ hybridization were used to detect genetic aberrations. Blood samples were screened for TP53 and RAS mutations using Sanger sequencing. RESULTS: Of the 35 cases, 30 were B-lineage ALL (85.7 %). Moreover, a male predominance was observed. Cytogenetic analysis revealed chromosomal anomalies in 27 cases (77.1 %). The most frequent aberrations were high hyperdiploidy and BCR/ABL rearrangement. Interestingly, we found the rare t(15;16) and the t(8;14), which are uncommon translocations in pediatric B-ALL. The mutational analysis revealed Pro72Arg (rs1042522:C > G) and Arg213Arg (rs1800372:A > G) in TP53. In correlation with cytogenetic data, rs1042522:C > G showed a significant association with the occurrence of chromosomal translocations (p = 0.04). However, no variant was detected in NRAS and KRAS genes. CONCLUSION: Our findings emphasize the significance of detecting chromosomal abnormalities as relevant prognostic markers. We also suggest a low occurrence of genetic variants among Moroccan children with ALL.


Subject(s)
Chromosome Aberrations , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tumor Suppressor Protein p53 , Humans , Male , Morocco , Female , Child , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child, Preschool , Infant , Tumor Suppressor Protein p53/genetics , Adolescent , Genes, ras/genetics , Mutation , Genes, p53/genetics
2.
J Biomol Struct Dyn ; 41(14): 6546-6558, 2023.
Article in English | MEDLINE | ID: mdl-35968638

ABSTRACT

Leptin receptor (LEPR) is a member of the class I cytokine receptor family that receives and transmits leptin signals. It is primarily involved in the regulation of energy expenditure and food intake. This study aimed to evaluate the association of LEPR gene polymorphisms, Lys109Arg, Gln223Arg and Lys656Asn, with obesity in Moroccan women and to explore the structural and functional consequences of these SNPs. The variants were genotyped using the Sanger sequencing method. The three-dimensional structures of LEPR extracellular domains were determined using a template-based tertiary structure modeling web server and the protein variants were generated using in silico mutagenesis. The amino acids conservation analysis in the variants region was performed based on a protein's evolutionary profile. The molecular dynamics simulations of the wild-types and variants N-terminal, cytokine receptor homology I and fibronectin type III domains of LEPR protein were performed to investigate their impact on the domain structures. We identified that only Lys656Asn polymorphism is associated with obesity in Moroccan women (P = 0.024). In silico analyses revealed that Lys109, Gln223 and Lys656 are exposed residues and their substitution leads to changes in protein structure through loss or gain of hydrogen bonds and hydrophobic interactions. Lys656Asn increases the stability and decreased flexibility of the fibronectin type III domain. Lys109Arg highly decreases the stability and increases flexibility and the overall dimension of N-terminal and cytokine receptor homology I domains. Gln223Arg increases the stability and the compaction level of these domains. These results provide insight into the involvement of LEPR variants in obesity development.Communicated by Ramaswamy H. Sarma.

3.
Clin Case Rep ; 9(11): e05059, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34815872

ABSTRACT

Screening the MC4R gene showed one rare mutation p.Met215Ile in a Moroccan patient with morbid obesity, which leads to a change in the protein structure. The analysis of MC4R variants may be useful for future therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...