Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416342

ABSTRACT

The harmful impact of waterborne copper (Cu) as a common abiotic stressor in aquatic environments has gained much more interest. The present study aimed to investigate the utilization of zinc oxide nanoparticles (ZnONPs) dietary supplementation to mitigate the chronic toxicity of Cu in African catfish (Clarias gariepinus). Two hundred and forty fish (92.94 ± 0.13 g) were assigned into six groups for 60 days. Control (C), ZnONPs20, and ZnONPs30 groups were fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs without Cu exposure. Cu, Cu + ZnONPs20, and Cu + ZnONPs30 groups were exposed to Cu at a dose of 10 mg L-1 and fed on basal diets fortified with 0, 20, and 30 mg kg-1 ZnONPs, respectively. The results revealed that the Cu-exposed fish experienced abnormal clinical signs and behavioral changes. The growth indices and acetylcholine esterase activity were significantly decreased (P < 0.05) in the Cu group. Meanwhile, hepatorenal and serum stress indices (P < 0.05) were significantly elevated with chronic Cu exposure. In addition, a higher expression of stress (P < 0.05) (heat shock protein 60 and hypoxia-inducible factor-1 alpha) and apoptotic-related genes (C/EBP homologous protein, caspase-3, and Bcl-2 Associated X-protein) with down-regulation (P < 0.05) of the anti-apoptotic-related genes (B-cell lymphoma 2 and proliferating cell nuclear antigen) was noticed in the Cu-exposed fish. Histopathological alterations in the gills, liver, kidney, and spleen were markedly reported in the Cu-exposed group. The dietary supplementation with ZnONPs significantly alleviated the negative impacts of chronic waterborne-Cu exposure on growth performance, physiological changes, gene expression, and tissue architecture, especially at 30 mg kg-1 diet level. In particular, the inclusion of ZnONPs at the 30 mg kg-1 diet level produced better outcomes than the 20 mg kg-1 diet. Overall, ZnONPs could be added as a feed supplement in the C. gariepinus diet to boost the fish's health and productivity and alleviate the stress condition brought on by Cu exposure.

2.
Sci Rep ; 13(1): 9888, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337042

ABSTRACT

The present study evaluated the pathogenicity, immunological, and oxidant/antioxidant responses against Saprolegnia parasitica (S. parasitica) infection in Nile tilapia (Oreochromis niloticus). Three groups of Nile tilapia were assigned as the control group (no zoospores exposure). The other two groups were challenged by Saprolegnia zoospores; one was used for sampling, and the other for mortality monitoring. The study lasted 3 weeks and was sampled at three point times at 1, 2, and 3 weeks. Results showed that S. parasitica zoospores were pathogenic to Nile tilapia, causing a cumulative mortality rate of 86.6%. Immunoglobulin M and C- reactive protein (IgM and CRP) levels showed a similar trend being significantly (P < 0.05, P < 0.001) higher in the infected group at weeks 1, 2, and 3, respectively, compared to the control group. Oxidant and antioxidant parameters in gills revealed that Malondialdehyde (MDA) level was significantly higher in the infected group compared to the control group. While catalase, glutathione peroxidase, and superoxide dismutase (CAT, GSH, and SOD) levels were significantly decreased in the infected group compared to the control group. Compared to the control, the tumor necrosis factor-α (TNF-α) gene was firmly upregulated in gill tissue at all-time points, particularly at day 14 post-infection. Meanwhile, Interleukin 1-ß (IL-1 ß) gene was significantly upregulated only at days 7 and 14 post-infection compared to control. Histopathological examination revealed destructive and degenerative changes in both skin and gills of experimentally infected Nile tilapia. Our findings suggest that Nile tilapia-S. parasitica infection model was successful in better understanding of pathogenicity and host (fish)-pathogen (oomycete) interactions, where the induced oxidative stress and upregulation of particular immune biomarkers in response to S. parasitica infection may play a crucial role in fish defense against oomycetes in fish.


Subject(s)
Cichlids , Fish Diseases , Saprolegnia , Animals , Antioxidants/metabolism , Cytokines/metabolism , Cichlids/metabolism , Oxidative Stress , Oxidants/metabolism , Animal Feed/analysis , Diet/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...