Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 127: 112205, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225857

ABSTRACT

The ideal bone substitute material should be mechanically strong, biocompatible with a resorption rate matching the rate of new bone formation. Brushite (dicalcium phosphate dihydrate) cement is a promising bone substitute material but with limited resorbability and mechanical properties. To improve the resorbability and mechanical performance of brushite cements, we incorporated gypsum (calcium sulfate dihydrate) and diazonium-treated polyglactin fibers which are well-known for their biocompatibility and bioresorbability. Here we show that by combining brushite and gypsum, we were able to fabricate biocompatible composite cements with high fracture toughness (0.47 MPa·m1/2) and a resorption rate that matched the rate of new bone formation. Adding functionalized polyglactin fibers to this composite cement further improved the fracture toughness up to 1.00 MPa·m1/2. XPS and SEM revealed that the improvement in fracture toughness is due to the strong interfacial bonding between the functionalized fibers and the cement matrix. This study shows that adding gypsum and functionalized polyglactin fibers to brushite cements results in composite biomaterials that combine high fracture toughness, resorbability, and biocompatibility, and have great potential for bone regeneration.


Subject(s)
Calcium Phosphates , Calcium Sulfate , Bone Cements , Materials Testing
2.
ACS Appl Bio Mater ; 4(9): 7222-7233, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006954

ABSTRACT

A composite disclosing agent can help dentists distinguish resin boundaries from the tooth structure and facilitate its complete removal while avoiding damage to the surrounding sound tooth structures. In this study we characterized the interaction of composite resin with various organic molecules with functional groups comparable to composite monomers which resulted in the development of a composite disclosing agent. The adhesion of these molecules to composite and tooth enamel and the ability to selectively stain composite were verified using spectrophotometry and other techniques. The optimal staining conditions were confirmed clinically in a pilot study on orthodontic patients. Our results indicated that a molecule with phenyl groups resembling composite monomers, such as methyl salicylate, was able to adsorb to composite resin through Van Der Waals forces and not tooth enamel and serve as a primer for a disclosing agent.


Subject(s)
Composite Resins , Tooth , Adsorption , Coloring Agents , Composite Resins/therapeutic use , Humans , Pilot Projects
3.
J Biomed Mater Res A ; 109(5): 666-681, 2021 05.
Article in English | MEDLINE | ID: mdl-32608184

ABSTRACT

The bone regenerative capacity of synthetic calcium phosphates (CaPs) can be enhanced through the enrichment with selected metal trace ions. However, defining the optimal elemental composition required for bone formation is challenging due to many possible concentrations and combinations of these elements. We hypothesized that the ideal elemental composition exists in the inorganic phase of the bone extracellular matrix (ECM). To study our hypothesis, we first obtained natural hydroxyapatite through the calcination of bovine bone, which was then investigated its reactivity with acidic phosphates to produce CaP cements. Bioceramic scaffolds fabricated using these cements were assessed for their composition, properties, and in vivo regenerative performance and compared with controls. We found that natural hydroxyapatite could react with phosphoric acid to produce CaP cements with biomimetic trace metals. These cements present significantly superior in vivo bone regenerative performance compared with cements prepared using synthetic apatite. In summary, this study opens new avenues for further advancements in the field of CaP bone biomaterials by introducing a simple approach to develop biomimetic CaPs. This work also sheds light on the role of the inorganic phase of bone and its composition in defining the regenerative properties of natural bone xenografts.


Subject(s)
Biomimetics , Bone Regeneration/drug effects , Calcium Phosphates/pharmacology , Ceramics/pharmacology , Metals/pharmacology , Trace Elements/pharmacology , Animals , Bone Cements/chemistry , Calcium Phosphates/chemistry , Cattle , Citric Acid/pharmacology , Compressive Strength , Crystallography, X-Ray , Durapatite/chemistry , Durapatite/isolation & purification , Female , Materials Testing , Metals/analysis , Metals/therapeutic use , Phosphoric Acids/pharmacology , Rats , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Tibia/diagnostic imaging , Tibia/drug effects , Tibia/injuries , Trace Elements/analysis , Trace Elements/therapeutic use , X-Ray Microtomography
4.
ACS Appl Bio Mater ; 3(12): 8559-8566, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35019626

ABSTRACT

Natural biominerals, such as bones and teeth, use acidic matrix biomolecules to control growth, morphology, and organization of the brittle hydroxyapatite crystals. This interplay provides biominerals with outstanding mechanical properties. Recently, we reported that the l-enantiomer of chiral tartaric acid has a potent regulatory effect on the crystal structure and mechanical performance of brushite cement, a mineral with a monoclinic crystal system. We hypothesized that this strategy could be applied using various chiral α-hydroxycarboxylic acids to enhance the mechanical performance of calcium sulfate dihydrate cements, another mineral belonging to the monoclinic crystal system. Calcium sulfate cements are widely used in dentistry, medicine, and construction, but these cements have low mechanical properties. In this work, we first determined the impact of different chiral α-hydroxycarboxylic acids on the properties of calcium sulfate cements. After that, we focused on identifying the regulation effect of chiral tartaric acid on gypsum crystals precipitated in a supersaturated solution. Here, we show that the selective effect of α-hydroxycarboxylic acid l-enantiomers on calcium sulfate crystals improved the mechanical performance of gypsum cements, while d-enantiomer had a weak impact. Compare to the calcium sulfate cements prepared without additives, the presence of l-enantiomer enhanced the compressive strength and the fracture toughness of gypsum cements by 40 and 70%, respectively. Thus, these results prove the generalizability of this approach and help us to fabricate high-strength cements.

5.
Acta Biomater ; 89: 343-358, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30853609

ABSTRACT

Immunomodulation strategies are believed to improve the integration and clinical performance of synthetic bone substitutes. One potential approach is the modification of biomaterial surface chemistry to mimic bone extracellular matrix (ECM). In this sense, we hypothesized that coating synthetic dicalcium phosphate (DCP) bioceramics with bone ECM proteins would modulate the host immune reactions and improve their regenerative performance. To test this, we evaluated the in vitro proteomic surface interactions and the in vivo performance of ECM-coated bioceramic scaffolds. Our results demonstrated that coating DCP scaffolds with bone extracts, specifically those containing calcium-binding proteins, dramatically modulated their interaction with plasma proteins in vitro, especially those relating to the innate immune response. In vivo, we observed an attenuated inflammatory response against the bioceramic scaffolds and enhanced peri-scaffold new bone formation supported by the increased osteoblastogenesis and reduced osteoclastogenesis. Furthermore, the bone extract rich in calcium-binding proteins can be 3D-printed to produce customized hydrogels with improved regeneration capabilities. In summary, bone extracts containing calcium-binding proteins can enhance the integration of synthetic biomaterials and improve their ability to regenerate bone probably by modulating the host immune reaction. This finding helps understand how bone allografts regenerate bone and opens the door for new advances in tissue engineering and bone regeneration. STATEMENT OF SIGNIFICANCE: Foreign-body reaction is an important determinant of in vivo biomaterial integration, as an undesired host immune response can compromise the performance of an implanted biomaterial. For this reason, applying immunomodulation strategies to enhance biomaterial engraftment is of great interest in the field of regenerative medicine. In this article, we illustrated that coating dicalcium phosphate bioceramic scaffolds with bone-ECM extracts, especially those rich in calcium-binding proteins, is a promising approach to improve their surface proteomic interactions and modulate the immune responses towards such biomaterials in a way that improves their bone regeneration performance. Collectively, the results of this study may provide a conceivable explanation for the mechanisms involved in presenting the excellent regenerative efficacy of natural bone grafts.


Subject(s)
Bone Regeneration/drug effects , Bone and Bones , Calcium Phosphates/pharmacology , Ceramics , Complex Mixtures/pharmacology , Hydrogels/pharmacology , Immunologic Factors , Osteogenesis/drug effects , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Animals , Bone and Bones/chemistry , Bone and Bones/physiology , Ceramics/chemistry , Ceramics/pharmacology , Complex Mixtures/chemistry , Female , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Rats
6.
Materials (Basel) ; 10(2)2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28772455

ABSTRACT

The aim of this work was to prepare hydroxyapatite coatings (HAp) by a sol-gel method on Ti6Al4V alloy and to study the bioactivity, biocompatibility and corrosion protection behaviour of these coatings in presence of simulated body fluids (SBFs). Thermogravimetric/Differential Thermal Analyses (TG/DTA) and X-ray Diffraction (XRD) have been applied to obtain information about the phase transformations, mass loss, identification of the phases developed, crystallite size and degree of crystallinity of the obtained HAp powders. Fourier Transformer Infrared Spectroscopy (FTIR) has been utilized for studying the functional groups of the prepared structures. The surface morphology of the resulting HAp coatings was studied by Scanning Electron Microscopy (SEM). The bioactivity was evaluated by soaking the HAp-coatings/Ti6Al4V system in Kokubo's Simulated Body Fluid (SBF) applying Inductively Coupled Plasma (ICP) spectrometry. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Alamar blue cell viability assays were used to study the biocompatibility. Finally, the corrosion behaviour of HAp-coatings/Ti6Al4V system was researched by means of Electrochemical Impedance Spectroscopy (EIS). The obtained results showed that the prepared powders were nanocrystalline HAp with little deviations from that present in the human bone. All the prepared HAp coatings deposited on Ti6Al4V showed well-behaved biocompatibility, good bioactivity and corrosion protection properties.

7.
Materials (Basel) ; 7(4): 2534-2560, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-28788582

ABSTRACT

Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...