Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Magn Reson Imaging ; 87: 119-132, 2022 04.
Article in English | MEDLINE | ID: mdl-34871716

ABSTRACT

The estimation of multi-exponential relaxation time T2 and their associated amplitudes A0 at the voxel level has been made possible by recent developments in the field of image processing. These data are of great interest for the characterization of biological tissues, such as fruit tissues. However, they represent a high number of information, not easily interpretable. Moreover, the non-uniformity of the MRI images, which mainly directly impacts A0, could induce interpretation errors. In this paper, we propose a post-processing scheme that clusters similar voxels according to the multi-exponential relaxation parameters in order to reduce the complexity of the information while avoiding the problems associated with intensity non-uniformity. We also suggest a data representation suitable for the visualization of the multi-T2 distribution within each tissue. We illustrate this work with results for different fruits, demonstrating the great potential of multi-T2 information to shed new light on fruit characterization.


Subject(s)
Fruit , Magnetic Resonance Imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
2.
Article in English | MEDLINE | ID: mdl-33488686

ABSTRACT

Instrumentalplaying techniques such as vibratos, glissandos, and trills often denote musical expressivity, both in classical and folk contexts. However, most existing approaches to music similarity retrieval fail to describe timbre beyond the so-called "ordinary" technique, use instrument identity as a proxy for timbre quality, and do not allow for customization to the perceptual idiosyncrasies of a new subject. In this article, we ask 31 human participants to organize 78 isolated notes into a set of timbre clusters. Analyzing their responses suggests that timbre perception operates within a more flexible taxonomy than those provided by instruments or playing techniques alone. In addition, we propose a machine listening model to recover the cluster graph of auditory similarities across instruments, mutes, and techniques. Our model relies on joint time-frequency scattering features to extract spectrotemporal modulations as acoustic features. Furthermore, it minimizes triplet loss in the cluster graph by means of the large-margin nearest neighbor (LMNN) metric learning algorithm. Over a dataset of 9346 isolated notes, we report a state-of-the-art average precision at rank five (AP@5) of 99.0%±1. An ablation study demonstrates that removing either the joint time-frequency scattering transform or the metric learning algorithm noticeably degrades performance.

3.
Article in English | MEDLINE | ID: mdl-32406838

ABSTRACT

Relaxation signal inside each voxel of magnetic resonance images (MRI) is commonly fitted by a multi-exponential decay curve. The estimation of a discrete multi-component relaxation model parameters from magnitude MRI data is a challenging nonlinear inverse problem since it should be conducted on the entire image voxels under non-Gaussian noise statistics. This paper proposes an efficient algorithm allowing the joint estimation of relaxation time values and their amplitudes using different criteria taking into account a Rician noise model, combined with a spatial regularization accounting for low spatial variability of relaxation time constants and amplitudes between neighboring voxels. The Rician noise hypothesis is accounted for either by an adapted nonlinear least squares algorithm applied to a corrected least squares criterion or by a majorization-minimization approach applied to the maximum likelihood criterion. In order to solve the resulting large-scale non-negativity constrained optimization problem with a reduced numerical complexity and computing time, an optimization algorithm based on a majorization approach ensuring separability of variables between voxels is proposed. The minimization is carried out iteratively using an adapted Levenberg-Marquardt algorithm that ensures convergence by imposing a sufficient decrease of the objective function and the non-negativity of the parameters. The importance of the regularization alongside the Rician noise incorporation is shown both visually and numerically on a simulated phantom and on magnitude MRI images acquired on fruit samples.

SELECTION OF CITATIONS
SEARCH DETAIL