Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 31(10): 683-90, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15554908

ABSTRACT

A significant renal vasodilation was observed previously after an acute cyclo-oxygenase (COX) inhibition induced with indomethacin. Because this effect could be due to COX-dependent intrarenal metabolization of arachidonic acid through cytochrome P450 (CYP450) pathways, the aim of the present study was to investigate, in vivo, possible interactions between COX and CYP450 mono-oxygenases. Mean arterial pressure (MAP) and renal blood flow (RBF), using an electromagnetic flow transducer for RBF evaluation, were measured continuously in 71 anaesthetized euvolaemic rats. Appropriate solvents (vehicle), 3 mg/kg indomethacin, 17-octadecynoic acid (17-ODYA; 2 mmol/L), either miconazole (MI; 1.5 mmol/L) or N-methylsulphonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 5 mg/kg) and N'-hydroxyphenylformamidine (HET0016; 5 or 10 mg/kg) were administered to inhibit either COX, CYP450 mono-oxygenases, epoxygenases or hydroxylase, respectively. The CYP450 and COX inhibitors were also combined as follows: 17-ODYA/indomethacin, MI (or MS-PPOH)/indomethacin, HET0016/indomethacin and indomethacin/HET0016. Mean arterial pressure and RBF were not modified by vehicle, 17-ODYA or MI (or MS-PPOH). However, MAP decreased slightly (P < 0.05; paired t-test, 5 d.f.) and RBF increased transiently (P < 0.05; anova, 5 d.f.) after HET0016. In contrast, MAP decreased by 10 mmHg (P < 0.05) and RBF increased by 10% (P < 0.05) after indomethacin. This enhancement was prevented by 17-ODYA or MI (or MS-PPOH), but not by HET0016. Moreover, RBF increased step-wise to 21% in the indomethacin/HET0016 experiment (P < 0.05). Consequently, changes from baseline in renal vascular resistance differed among treatments, averaging -2 +/- 3 (vehicle), -13 +/- 3 (indomethacin; P < 0.05 vs vehicle), -4 +/- 3 (17-ODYA/indomethacin), -3 +/- 4 (MI or MS-PPOH/indomethacin), -15 +/- 3 (HET0016/indomethacin; P < 0.05) and -22 +/- 4% (indomethacin/HET0016; P < 0.05). In conclusion, these results demonstrate that the renal vasodilation induced by indomethacin can be prevented by prior inhibition of CYP450 mono-oxygenases and further suggest that the CYP450 epoxygenases pathway may prevail.


Subject(s)
Arachidonic Acid/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Indomethacin/pharmacology , Renal Circulation/drug effects , Animals , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Fatty Acids, Unsaturated/pharmacology , Hemodynamics/drug effects , Hydroxyeicosatetraenoic Acids/metabolism , Kidney/drug effects , Kidney/physiology , Male , Miconazole/pharmacokinetics , Rats , Rats, Wistar , Vasodilation/drug effects , Vasodilation/physiology
2.
Am J Physiol Renal Physiol ; 278(4): F561-9, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10751216

ABSTRACT

In cultured vascular muscle cells, nitric oxide (NO) has been shown to inhibit voltage-dependent Ca(2+) channels, which are involved in renal blood flow (RBF) autoregulation. Therefore, our purpose was to specify in vivo the effects of this interaction on RBF autoregulation. To do so, hemodynamics were investigated in anesthetized rats during Ca(2+) channel blockade before or after acute NO synthesis inhibition. Rats were treated intravenously with vehicle (n = 10), 0.3 mg/kg body wt N(G)-nitro-L-arginine-methyl ester (L-NAME; n = 7), 4.5 microg. kg body wt(-1). min(-1) nifedipine (n = 8) alone, or with nifedipine infused before (n = 8), after (n = 8), or coadministered with L-NAME (n = 10). Baseline renal vascular resistance (RVR) averaged 14.0 +/- 1.2 resistance units and did not change after vehicle. RVR increased or decreased significantly by 27 and 29% after L-NAME or nifedipine, respectively. Nifedipine reversed, but did not prevent, RVR increase after or coadministered with L-NAME. RBF autoregulation was maintained after L-NAME, but the autoregulatory pressure limit (P(A)) was significantly lowered by 15 mmHg. Nifedipine pretreatment or coadministration with L-NAME limited P(A) resetting or suppressed autoregulation at higher doses. Results were similar with verapamil. Intrarenal blockade of Ca(2+)-activated K(+) channels also prevented autoregulatory resetting by L-NAME (n = 8). These findings suggest NO inhibits voltage-dependent Ca(2+) channels and thereby modulates RBF autoregulatory efficiency.


Subject(s)
Calcium Channels/physiology , Nitric Acid/metabolism , Renal Circulation/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Calcium Channel Blockers/pharmacology , Enzyme Inhibitors/pharmacology , Hemodynamics/drug effects , Hemodynamics/physiology , Homeostasis/drug effects , Homeostasis/physiology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nifedipine/pharmacology , Nitric Acid/antagonists & inhibitors , Rats , Rats, Wistar , Time Factors , Vascular Resistance/drug effects , Vascular Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...