Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 61(1): 97-105, 2010.
Article in English | MEDLINE | ID: mdl-20057095

ABSTRACT

Concerns about water shortage and pollution have received increased attention over the past few years, especially in developing countries with warm climate. In order to help local water management in these countries, the Euro-Mediterranean Regional Programme (MEDA) has financed the Zer0-m project (E-mail: www.zer0-m.org). As a part of this project, several constructed wetland (CW) pilot systems with different pre-treatments have been implemented in four Technological Demonstration Centres in Egypt, Morocco, Tunisia and Turkey. The aim of this research was to establish appropriate designs for treatment of segregated domestic black (BW) and grey water (GW). We tested several different multistage CW configurations, consisting of horizontal and vertical subsurface flow CW for secondary treatment and free water systems as tertiary stage. CW removal efficiencies of TSS, COD, BOD(5), N-NH(4)(+), N-NO(3)(-), N(tot), total coliforms (TC) were evaluated for each of the implemented systems. The results from this study demonstrate the potential of CWs as a suitable technology for treating segregated domestic wastewater. A very efficient COD reduction (up to 98%) and nitrification (92-99%) was achieved for BW and GW in all systems. CW effluent concentrations were below 15 mg/L for BOD(5), 1 mg/L for N-NO(3)(-) and 0.5 mg/L for N-NH(4)(+) together with acceptable TC counts. Based on these results, we suggest adopting the design parameters used in this study for the treatment of segregated wastewater in the Mediterranean area.


Subject(s)
Waste Disposal, Fluid/methods , Water Purification/methods , Mediterranean Region , Morocco , Organic Chemicals/isolation & purification , Pilot Projects , Quaternary Ammonium Compounds/isolation & purification , Turkey , Water Supply/standards , Wetlands
2.
Water Sci Technol ; 51(12): 125-32, 2005.
Article in English | MEDLINE | ID: mdl-16114674

ABSTRACT

Two high-rate, anaerobic/aerobic units were used to treat the sewage of the Institut Agronomique st Vétérinaire Hassan II (Morocco) campus in a 1,100 m2-plant designed for 1,500 e.p. and receiving 63 m3 per day. The anaerobic pre-treatment consisted of a two-step up-flow anaerobic reactor (TSUAR) comprising two reactors and one external settler all in series. The aerobic line, or post-treatment, consisted of a high-rate algal pond (HRAP) and one maturation pond in series. The system totalized a hydraulic retention time (HRT) of 9 days. A gravel filter (GF) was constructed behind the TSUAR to trap low-density particles. The TSUAR removed 80% of COD and 90% of SS within 48 h. Solids retention time in the reactors averaged 32 d with a specific sludge production of 0.28 g SS g(-1) COD removed. Almost 93% of the sludge evacuated from the settler was stabilized. Specific biogas production from both reactors was 0.25m3 kg(-1) COD removed. Used in this configuration, the HRAP lost its BOD removal activity and increased its nutrients and pathogens removal capabilities (tertiary treatment). Results showed that 85% of total nitrogen and 48% of total phosphorus were removed by the HRAP. Land area requirement of this combination was less than 1 m2 per capita and filtered final effluent was of excellent quality (COD, 82 mg/l; TKN, 8.3 mg/l; total P, 2.7 mg/l, faecal coliforms, 2.4 10(3)/100 ml and zero helminths eggs).


Subject(s)
Bioreactors , Sewage/microbiology , Waste Disposal, Fluid/methods , Ammonia/isolation & purification , Anaerobiosis , Animals , Biodegradation, Environmental , Eggs , Enterobacteriaceae/isolation & purification , Feces/microbiology , Helminths/isolation & purification , Mediterranean Sea , Morocco , Nitrogen/isolation & purification , Oxygen/chemistry , Oxygen/metabolism , Phosphorus/isolation & purification , Sewage/chemistry , Time Factors
3.
Water Sci Technol ; 48(2): 269-76, 2003.
Article in English | MEDLINE | ID: mdl-14510220

ABSTRACT

Results from a tracer study were used to determine and to compare actual and standard (k(20 degrees C)) first order reaction rate constants for COD removal in a High Rate Algal Pond (HRAP) and in 3 facultative ponds (FP) in series. An annual average k(20 degreesC) of 0.123 day(-1) was found for the HRAP while the values of 0.097, 0.025 and 0.003 d(-1) were found for facultative ponds 1, 2 and 3 respectively. Also, comparing nominal and tracer study hydraulic retention times showed large differences for the FP but not for the HRAP indicating that the former were suffering from severe short-circuiting. Loading rate within the range of operation exhibited a positive correlation with k(20 degrees C) for the HRAP but did not show such a relationship for any of the FP. Optimal chlorophyll-a concentration was found to be 3 mg/l for the HRAP and only 1.1 mg/l for the FP. Pollutant specific removal rates (SRR), that translate the hydrodynamic efficiency and the rate of COD biodegradation into pond performance per m2 and per day were calculated. They show that the adoption of the HRAP in place of a series of 3 FP reduces the net land area requirement (LAR) by at least 40%.


Subject(s)
Eukaryota , Oxygen/chemistry , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Chlorophyll/analysis , Chlorophyll A , Facility Design and Construction , Kinetics , Oxygen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...