Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005103

ABSTRACT

In this study, the nano-aluminum powder was reinforced with a hybrid of copper and graphene nanoplatelets (GNPs). The ratios of GNPs were 0 wt%, 0.4 wt%, 0.6 wt%, 1.2 wt% and 1.8 wt%. To avoid the reaction between aluminum and graphene and, consequently, the formation of aluminum carbide, the GNP was first metalized with 5 wt% Ag and then coated with the predetermined 15 wt% Cu by the electroless coating process. In addition, the coating process was performed to improve the poor wettability between metal and ceramic. The Al/(GNPs-Ag)Cu nanocomposites with a high relative density of 99.9% were successfully prepared by the powder hot-pressing techniques. The effects of (GNPs/Ag) and Cu on the microstructure, density, hardness, and compressive strength of the Al-Cu nanocomposite were studied. As a result of agitating the GNPs during the cleaning and silver and Cu-plating, a homogeneous distribution was achieved. Some layers formed nano-tubes. The Al4C3 phase was not detected due to coating GNPs with Cu. The Cu9Al4 intermetallic was formed during the sintering process. The homogeneous dispersion of Cu and different ratios of GNs, good adhesion, and the formation of the new Cu9Al4 intermetallic improved in hardness. The pure aluminum sample recorded 216.2 HV, whereas Al/Cu reinforced with 1.8 GNs recorded 328.42 HV with a 51.9% increment. The compressive stress of graphene samples was improved upon increasing the GNPs contents. The Al-Cu/1.8 GNs sample recorded 266.99 MPa.

2.
Materials (Basel) ; 15(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36295184

ABSTRACT

In this study, we enhanced the adhesion of graphene nanosheets to achieve homogeneous dispersion, consequently improving the electrical and thermal conductivity, coefficient of thermal expansion, and corrosion resistance with an aluminum matrix containing up to 1.5 wt. % graphene. First, 2.5 wt. % Al2O3 and varying ratios of graphene up to 1.5 wt. % were coated with 5 wt. % silver nanoparticles to metalize their surfaces. Predetermined portions of coated alumina and graphene were mixed with Al/10 wt. % Cu powder for 45 h. Mixed samples were compacted under 600 MPa and sintered at 565 °C in a vacuum furnace for 60 min with a low heating rate of 2 °C/min. The strengthening effect of the added materials on the density, microstructure, electrical and thermal conductivities, thermal expansion, and corrosion behavior of aluminum were investigated. Excellent adhesion and homogeneous dispersion of the investigated reinforcements were achieved. Three phenomena were observed: (1) an improvement in the densification, electrical and thermal conductivity, thermal expansion, and corrosion rate by adding 10 wt. % Cu to the aluminum matrix; (2) deterioration of the properties of Al/10 wt. % Cu with the addition of 2.5 wt. % alumina nanoparticles; and (3) improved properties with the addition of graphene nanosheets up to 1 wt. % and a decrease in property values beyond 1.5 wt. % graphene content due to the formation of agglomerations and pores in the metal matrix.

3.
J Adv Res ; 8(6): 717-729, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29188080

ABSTRACT

The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10-8 g/cm2 s and 3.4 × 10-8 g/cm2 s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

SELECTION OF CITATIONS
SEARCH DETAIL
...