Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 25(2): 710-723, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30322877

ABSTRACT

PURPOSE: Targeted therapies that use the signaling pathways involved in prostate cancer are required to overcome chemoresistance and improve treatment outcomes for men. Molecular chaperones play a key role in the regulation of protein homeostasis and are potential targets for overcoming chemoresistance.Experimental Design: We established 4 chemoresistant prostate cancer cell lines and used image-based high-content siRNA functional screening, based on gene-expression signature, to explore mechanisms of chemoresistance and identify new potential targets with potential roles in taxane resistance. The functional role of a new target was assessed by in vitro and in vivo silencing, and mass spectrometry analysis was used to identify its downstream effectors. RESULTS: We identified FKBP7, a prolyl-peptidyl isomerase overexpressed in docetaxel-resistant and in cabazitaxel-resistant prostate cancer cells. This is the first study to characterize the function of human FKBP7 and explore its role in cancer. We discovered that FKBP7 was upregulated in human prostate cancers and its expression correlated with the recurrence observed in patients receiving docetaxel. FKBP7 silencing showed that FKBP7 is required to maintain the growth of chemoresistant cell lines and chemoresistant tumors in mice. Mass spectrometry analysis revealed that FKBP7 interacts with eIF4G, a component of the eIF4F translation initiation complex, to mediate the survival of chemoresistant cells. Using small-molecule inhibitors of eIF4A, the RNA helicase component of eIF4F, we were able to kill docetaxel- and cabazitaxel-resistant cells. CONCLUSIONS: Targeting FKBP7 or the eIF4G-containing eIF4F translation initiation complex could be novel therapeutic strategies to eradicate taxane-resistant prostate cancer cells.


Subject(s)
Bridged-Ring Compounds/pharmacology , Calcium-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Eukaryotic Initiation Factor-4F/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tacrolimus Binding Proteins/metabolism , Taxoids/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Computational Biology , Disease Models, Animal , Disease Progression , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Gene Silencing , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Protein Binding , RNA, Small Interfering/genetics , Transcriptome , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...