Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; 41(21): 11578-11597, 2023.
Article in English | MEDLINE | ID: mdl-36617972

ABSTRACT

In this work, a novel crystal, (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one (E-BSP) was synthesized via Knoevenagel condensation of benzaldehyde and (E)-6-(4-methoxystyryl)-4,5-dihydropyridazin-3(2H)-one. The molecular structure of E-BSP was confirmed by using FT-IR, 1H-NMR, 13C-NMR, UV-vis, ESI-MS, TGA/DTA thermal analyses and single crystal X-ray diffraction. The DFT/B3LYP methods with the 6-311++G(d,p) basis set were used to determine the vibrational modes over the optimized structure. Potential energy distribution (PED) and the VEDA 4 software were used to establish the theoretical mode assignments. The same approach was used to compute the energies of frontier molecular orbitals (HOMO-LUMO), global reactivity descriptors, and molecular electrostatic potential (MEP). Additionally, experimental and computed UV spectral parameters were determined in methanol and the obtained outputs were supported by FMO analysis. Molecular docking and molecular dynamics (MD) simulation analyses of the E-BSP against six proteins obtained from different cancer pathways were carried out. The proteins include; epidermal growth factor receptor (EGFR), Estrogen receptor (ERα), Mammalian target of rapamycin (mTOR), Progesterone receptor (PR) (Breast cancer), Human cyclin-dependent kinase 2 (CDK2) (Colorectal cancer), and Survivin (Squamous cell carcinoma/Non-small cell lung cancer). The results of the analyses showed that the compound had less binding energies ranging between -6.30 to -9.09 kcal/mol and formed stable complexes at the substrate-binding site of the proteins after the 50 ns MD simulation. Therefore, E-BSP was considered a potential inhibitor of different cancer pathways and should be used for the treatment of cancer after experimental validation and clinical trial.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Molecular Dynamics Simulation , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Antineoplastic Agents/pharmacology
2.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 3): 322-325, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35371553

ABSTRACT

The title compound, C22H15N3O4, is built up from a central imidazo[1,2-a]pyridine ring system connected to a nitroso group, a phenyl ring and a 2-oxo-2-phenyl-ethyl acetate group. The imidazo[1,2-a] pyridine ring system is almost planar (r.m.s. deviation = 0.017 Å) and forms dihedral angles of 22.74 (5) and 45.37 (5)°, respectively, with the phenyl ring and the 2-oxo-2-phenyl-ethyl acetate group. In the crystal, the mol-ecules are linked into chains parallel to the b axis by C-H⋯O hydrogen bonds, generating R 2 1 (5) and R 4 4 (28) graph-set motifs. The chains are further linked into a three-dimensional network by C-H⋯π and π-stacking inter-actions. The inter-molecular inter-actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.5%), H⋯O/O⋯H (20.0%), C⋯O/O⋯C (6.5%), C⋯N/N⋯C (6.2%), H⋯N/N⋯H (4.5%) and C⋯C (4.3%) inter-actions.

3.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 1): 23-27, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33520277

ABSTRACT

The title pyridazinone derivative, C19H14Cl2N2O, an important pharmacophore with a wide variety of biological applications is not planar, the chloro-phenyl and pyridazinone rings being almost perpendicular, subtending a dihedral angle of 85.73 (11)°. The phenyl ring of the styryl group is coplanar with the pyridazinone ring [1.47 (12)°]. In the crystal, N-H⋯O hydrogen bonds form inversion dimers with an R 2 2(8) ring motif and C-H⋯Cl hydrogen bonds also occur. The roles of the inter-molecular inter-actions in the crystal packing were clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (37.9%), C⋯H/H⋯C (18.7%), Cl⋯H/ H⋯Cl (16.4%) and Cl⋯C/C⋯Cl (6.7%) contacts.

4.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 432-437, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148889

ABSTRACT

Two polymorphs of the title compound, C19H16N2O3, were obtained from ethano-lic (polymorph I) and methano-lic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete mol-ecule in the asymmetric unit. The main difference between the mol-ecules of (I) and (II) is the reversed position of the hy-droxy group of the carb-oxy-lic function. All other conformational features are found to be similar in the two mol-ecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) inter-molecular O-H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O-H⋯O hydrogen bonds with an R 2 2(8) ring motif between two carb-oxy-lic functions are found. The inter-molecular inter-actions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

5.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 12): 1880-1883, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31871750

ABSTRACT

In the title compound, C10H10N2OS, the five atoms of the thio-phene ring are essentially coplanar (r.m.s. deviation = 0.0037 Å) and the pyridazine ring is non-planar. In the crystal, pairs of N-H⋯O hydrogen bonds link the mol-ecules into dimers with an R 2 2(8) ring motif. The dimers are linked by C-H⋯O inter-actions, forming layers parallel to the bc plane. The theoretical geometric parameters are in good agreement with XRD results. The inter-molecular inter-actions were investigated using a Hirshfeld surface analysis and two-dimensional fingerprint plots. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are by H⋯H (39.7%), C⋯H/H⋯C (17.3%) and O⋯H/H⋯O (16.8%) contacts.

6.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 12): 1925-1929, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31871759

ABSTRACT

The title pyridazinone derivative, C20H18N2O3, is not planar. The phenyl ring and the pyridazine ring are inclined to each other by 10.55 (12)°, whereas the 4-methyl-benzyl ring is nearly orthogonal to the pyridazine ring, with a dihedral angle of 72.97 (10)°. In the crystal, mol-ecules are linked by pairs of O-H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(14) ring motif. The dimers are linked by C-H⋯O hydrogen bonds, generating ribbons propagating along the c-axis direction. The inter-molecular inter-actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. They revealed that the most significant contributions to the crystal packing are from H⋯H (48.4%), H⋯O/O⋯H (21.8%) and H⋯C/C⋯H (20.4%) contacts. Mol-ecular orbital calculations providing electron-density plots of HOMO and LUMO mol-ecular orbitals and mol-ecular electrostatic potentials (MEP) were also computed, both with the DFT/B3LYP/6-311 G++(d,p) basis set.

7.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 11): 1679-1684, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31709089

ABSTRACT

The asymmetric units of the title compounds both contain one nonplanar mol-ecule. In 4-benzyl-6-phenyl-4,5-di-hydro-pyridazin-3(2H)-one, C17H14N2O, (I), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 46.69 (9)°; the phenyl ring of the benzyl group is nearly perpendicular to the plane of the pyridazine ring, the dihedral angle being 78.31 (10)°. In methyl 2-[5-(2,6-di-chloro-benz-yl)-6-oxo-3-phenyl-1,4,5,6-tetra-hydropyridazin-1-yl]acetate, C20H16Cl2N2O3, (II), the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 21.76 (18)°, whereas the phenyl ring of the di-chloro-benzyl group is inclined to the pyridazine ring by 79.61 (19)°. In the crystal structure of (I), pairs of N-H⋯O hydrogen bonds link the mol-ecules into inversion dimers with an R 2 2(8) ring motif. In the crystal structure of (II), C-H⋯O hydrogen bonds generate dimers with R 1 2(7), R 2 2(16) and R 2 2(18) ring motifs. The Hirshfeld surface analyses of compound (I) suggests that the most significant contributions to the crystal packing are by H⋯H (48.2%), C⋯H/H⋯C (29.9%) and O⋯H/H⋯O (8.9%) contacts. For compound (II), H⋯H (34.4%), C⋯H/H⋯C (21.3%) and O⋯H/H⋯O (16.5%) inter-actions are the most important contributions.

8.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 11): 1734-1737, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31709099

ABSTRACT

In the title com-pound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, inter-molecular O-H⋯O hydrogen bonds generate C(5) chains and N-H⋯O hydrogen bonds produce R 2 2(8) motifs. These types of inter-actions lead to the formation of layers parallel to (12). The three-dimensional network is achieved by C-H⋯O inter-actions, including R 2 4(8) motifs. Inter-molecular inter-actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H⋯H (43.3%), H⋯C/C⋯H (19.3%), H⋯O/H⋯O (22.6%), C⋯N/N⋯C (3.0%) and H⋯N/N⋯H (5.8%) contacts. C-H⋯π inter-actions and aromatic π-π stacking inter-actions are not observed.

9.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 9): 1352-1356, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31523465

ABSTRACT

In this paper, we describe the synthesis of a new di-hydro-2H-pyridazin-3-one derivative. The mol-ecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The mol-ecular conformation is stabilized by weak intra-molecular C-H⋯N contacts. In the crystal, pairs of N-H⋯O hydrogen bonds link the mol-ecules into inversion dimers with an R 2 2(8) ring motif. The inter-molecular inter-actions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) inter-actions.

10.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 6): 892-895, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31391989

ABSTRACT

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C-H⋯O hydrogen bonds generate dimers with R 2 2(10) and R 2 2(24) ring motifs which are linked by C-H⋯O inter-actions, forming chains extending parallel to the c-axis direction. The inter-molecular inter-actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...