Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36675992

ABSTRACT

The present work was designed to study the chemical composition, antioxidant, antihyperglycemic effect, and toxicity assessment of Ridolfia segetum (L.) Moris extract. The chemical composition was studied by use of high-performance liquid chromatography (HPLC). Antioxidant power was tested by use of DPPH and FRAP assays. The antihyperglycemic effect was tested by use of a glucose tolerance test, while toxicity assessment was done in vivo by use of Wistar rats for 14 days. Analysis of the extract by HPLC-UV revealed the presence of gallic acid, catechol, vanillic acid, catechin, tannic acid, rosmarinic acid, naringenin, and coumarin acid. The crude hydroethanolic extract possessed high levels of total phenols (15.6 ± 1.76 mg EAG/g), condensed tannins (383.49 mg ECat/g DM), and flavonoid (11.63 mg EQ/g). The findings showed that the studied extract possessed good antioxidant power with IC50 values equal to 550, 650, 700 µg/mL respectively for the decoction, the ethyl acetate fraction (F2M), and the ethyl acetate fraction (F2E). For the antioxidant activity by FRAP, the aqueous fraction (F3E) and the aqueous extract (F4) showed CE50 values of 0.33 mg/mL and 0.4 mg/mL, respectively. Glucose tolerance test analysis showed that R. segetum (L.) Moris decoction had a significant postprandial antihyperglycemic effect in normal Wistar rats. The results of the acute toxicity test showed that the decoction was not toxic even at 2 g/Kg. Pancreatic α-amylase activity was significantly inhibited in the presence of R. segetum (L.) Moris extract (IC50 = 0.133 ± 0.09 mg/mL). The outcome of the present work showed that R. segetum (L.) Moris is very rich in phenolic compounds with potent antioxidant and antihyperglycemic effects.

2.
Plants (Basel) ; 10(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34685879

ABSTRACT

Cistus ladanifer L. is a plant widely used in folk medicine to treat various illnesses. This study aims to evaluate the effect of the plant flourishing time harvest on the chemical composition and the antimicrobial effect of its essential oil. Chemical analysis of the essential oil was carried out using gas chromatography-mass spectrometry (GC-MS). The antibacterial and antifungal proprieties were tested against four selected bacteria (Staphylococcus aureus, Salmonella Typhi, Escherichia coli, and Acinetobacter baumannii) and nine fungi (Yeasts (Candida tropicalis, Candida glabrata, Candida dubliniensis, Candida sp., Rhodotorula rubra, Cryptococcus neoformans) and molds (Penicillium sp. (P), Fusarium sp. (F), Aspergillus niger (A. niger)), respectively. The essential oil of C. ladanifer demonstrated a powerful antibacterial activity with an inhibition zone of 55 ± 0.22 mm for Staphylococcus aureus, 42 ± 0.11 mm for Escherichia coli, 35 ± 0.27 mm for Acinetobacter baumannii (Full resistant to antibiotics) and 30 ± 0.25 mm for Salmonella Typhi. It also inhibited all tested bacteria at 10 µL/mL. For the antifungal activity test, C. tropicalis and C. neoformans appeared to be the most sensitive strains to the essential oil with an inhibition zone of 13 mm, followed by R. rubra and Penicillium sp. (12 mm), then C. dubliniensis and C. glabrata (11 mm). The chemical analysis of the essential oil by GC-MS revealed that the major components of the essential oil were viridiflorol (17.64%), pinocarveol (11.02%), bornylacetate (9.38%), and ledol (8.85%). C. ladanifer exhibited a remarkable antimicrobial activity that could be more exploited to develop targeted natural remedies against specific diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...