Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(32): e2222036120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523563

ABSTRACT

Intracellular plant immune receptors, termed NLRs (Nucleotide-binding Leucine-rich repeat Receptors), confer effector-triggered immunity. Sensor NLRs are responsible for pathogen effector recognition. Helper NLRs function downstream of sensor NLRs to transduce signaling and induce cell death and immunity. Activation of sensor NLRs that contain TIR (Toll/interleukin-1receptor) domains generates small molecules that induce an association between a downstream heterodimer signalosome of EDS1 (EnhancedDisease Susceptibility 1)/SAG101 (Senescence-AssociatedGene 101) and the helper NLR of NRG1 (NRequired Gene 1). Autoactive NRG1s oligomerize and form calcium signaling channels largely localized at the plasma membrane (PM). The molecular mechanisms of helper NLR PM association and effector-induced NRG1 oligomerization are not well characterized. We demonstrate that helper NLRs require positively charged residues in their N-terminal domains for phospholipid binding and PM association before and after activation, despite oligomerization and conformational changes that accompany activation. We demonstrate that effector activation of a TIR-containing sensor NLR induces NRG1 oligomerization at the PM and that the cytoplasmic pool of EDS1/SAG101 is critical for cell death function. EDS1/SAG101 cannot be detected in the oligomerized NRG1 resistosome, suggesting that additional unknown triggers might be required to induce the dissociation of EDS1/SAG101 from the previously described NRG1/EDS1/SAG101 heterotrimer before subsequent NRG1 oligomerization. Alternatively, the conformational changes resulting from NRG1 oligomerization abrogate the interface for EDS1/SAG101 association. Our data provide observations regarding dynamic PM association during helper NLR activation and underpin an updated model for effector-induced NRG1 resistosome formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , NLR Proteins/genetics , Plant Immunity/genetics , Plants/metabolism , Receptors, Immunologic/metabolism , Cell Membrane/metabolism , Plant Diseases , Carboxylic Ester Hydrolases/genetics
3.
Proc Natl Acad Sci U S A ; 120(11): e2220921120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893276

ABSTRACT

TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel-forming immune receptors. RNL activation drives cytoplasmic Ca2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1. Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Calcium/metabolism , Receptors, Immunologic/metabolism , Niacinamide/metabolism , Plant Immunity/genetics , Plant Diseases/genetics
4.
FEBS J ; 290(13): 3311-3335, 2023 07.
Article in English | MEDLINE | ID: mdl-35668694

ABSTRACT

The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.


Subject(s)
NLR Proteins , Plant Proteins , Plants , Receptors, Pattern Recognition , Plants/immunology , Plants/metabolism , Receptors, Pattern Recognition/metabolism , Signal Transduction , NLR Proteins/metabolism , Plant Proteins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Agriculture
5.
Cell Host Microbe ; 30(12): 1717-1731.e6, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36446350

ABSTRACT

Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Plant Immunity , Immunity , Homeostasis
6.
New Phytol ; 232(6): 2440-2456, 2021 12.
Article in English | MEDLINE | ID: mdl-34628646

ABSTRACT

Activation of nucleotide-binding leucine-rich repeat receptors (NLRs) results in immunity and a localized cell death. NLR cell death activity requires oligomerization and in some cases plasma membrane (PM) localization. The exact mechanisms underlying PM localization of NLRs lacking predicted transmembrane domains or recognizable lipidation motifs remain elusive. We used confocal microscopy, genetically encoded molecular tools and protein-lipid overlay assays to determine whether PM localization of members of the Arabidopsis HeLo-/RPW8-like domain 'helper' NLR (RNL) family is mediated by the interaction with negatively charged phospholipids of the PM. Our results show that PM localization and stability of some RNLs and one CC-type NLR (CNL) depend on the direct interaction with PM phospholipids. Depletion of phosphatidylinositol-4-phosphate from the PM led to a mis-localization of the analysed NLRs and consequently inhibited their cell death activity. We further demonstrate homo- and hetero-association of members of the RNL family. Our results provide new insights into the molecular mechanism of NLR localization and defines an important role of phospholipids for CNL and RNL PM localization and consequently, for their function. We propose that RNLs interact with anionic PM phospholipids and that RNL-mediated cell death and immune responses happen at the PM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Membrane , NLR Proteins/genetics , Phospholipids , Plant Diseases , Plant Immunity
7.
Biochem Soc Trans ; 49(5): 2177-2188, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34623378

ABSTRACT

Plants utilize cell-surface localized and intracellular leucine-rich repeat (LRR) immune receptors to detect pathogens and to activate defense responses, including transcriptional reprogramming and the initiation of a form of programmed cell death of infected cells. Cell death initiation is mainly associated with the activation of nucleotide-binding LRR receptors (NLRs). NLRs recognize the presence or cellular activity of pathogen-derived virulence proteins, so-called effectors. Effector-dependent NLR activation leads to the formation of higher order oligomeric complexes, termed resistosomes. Resistosomes can either form potential calcium-permeable cation channels at cellular membranes and initiate calcium influxes resulting in activation of immunity and cell death or function as NADases whose activity is needed for the activation of downstream immune signaling components, depending on the N-terminal domain of the NLR protein. In this mini-review, the current knowledge on the mechanisms of NLR-mediated cell death and resistance pathways during plant immunity is discussed.


Subject(s)
NLR Proteins/metabolism , Plants/microbiology , Cell Death , Signal Transduction/immunology
8.
Science ; 373(6553): 420-425, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34140391

ABSTRACT

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. In Arabidopsis, a subfamily of "helper" NLRs is required by many "sensor" NLRs. Active NRG1.1 oligomerized, was enriched in plasma membrane puncta, and conferred cytoplasmic calcium ion (Ca2+) influx in plant and human cells. NRG1.1-dependent Ca2+ influx and cell death were sensitive to Ca2+ channel blockers and were suppressed by mutations affecting oligomerization or plasma membrane enrichment. Ca2+ influx and cell death mediated by NRG1.1 and ACTIVATED DISEASE RESISTANCE 1 (ADR1), another helper NLR, required conserved negatively charged N-terminal residues. Whole-cell voltage-clamp recordings demonstrated that Arabidopsis helper NLRs form Ca2+-permeable cation channels to directly regulate cytoplasmic Ca2+ levels and consequent cell death. Thus, helper NLRs transduce cell death signals directly.


Subject(s)
Arabidopsis Proteins/chemistry , Calcium Channels/chemistry , Calcium/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , NLR Proteins/chemistry , Arabidopsis , Arabidopsis Proteins/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cell Death , Cell Membrane/metabolism , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , NLR Proteins/metabolism , Patch-Clamp Techniques , Protein Domains , Protein Structure, Secondary
9.
PLoS Biol ; 18(9): e3000783, 2020 09.
Article in English | MEDLINE | ID: mdl-32925907

ABSTRACT

Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that "sense" pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as "helper" NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and "classical" CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully required for TNL signaling, and can also support defense activation during CNL-mediated ETI.


Subject(s)
Arabidopsis/immunology , NLR Proteins/physiology , Plant Immunity/genetics , Receptors, Immunologic/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation, Plant , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , Multigene Family/genetics , Multigene Family/physiology , NLR Proteins/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Plants, Genetically Modified , Receptors, Immunologic/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome
10.
Curr Opin Plant Biol ; 50: 82-94, 2019 08.
Article in English | MEDLINE | ID: mdl-31063902

ABSTRACT

Plant nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as intracellular receptors in response to pathogens and activate effector-triggered immune responses (ETI). The activation of some sensor NLRs (sNLR) by their corresponding pathogen effector is well studied. However, the mechanisms by which the recently defined helper NLRs (hNLR) function to transduce sNLR activation into ETI-associated cell death and disease resistance remains poorly understood. We briefly summarize recent examples of sNLR activation and we then focus on hNLR requirements in sNLR-initiated immune responses. We further discuss how shared sequence homology with fungal self-incompatibility proteins and the mammalian mixed lineage kinase domain like pseudokinase (MLKL) proteins informs a plausible model for the structure and function of an ancient clade of plant hNLRs, called RNLs.


Subject(s)
Plant Diseases , Plants , Animals , Disease Resistance , Fungal Proteins , NLR Proteins , Plant Immunity , Plant Proteins
11.
Curr Opin Plant Biol ; 44: 98-107, 2018 08.
Article in English | MEDLINE | ID: mdl-29597139

ABSTRACT

Phytopathogenic microbes multiply in the apoplast-a plant's intercellular spaces-of infected plants, and hence their success relies on the conditions in this habitat. Despite being extracellular parasites, most microbes translocate effectors into host cells that promote disease by acting inside cells. Initial studies suggested that effectors act predominantly as suppressors of plant immunity. These pioneering studies were trend-setting, causing a strong bias in the functional investigation of effectors. Yet, recent studies on bacterial model pathogens have identified effectors that promote disease by causing either increased sugar or water levels in the apoplast. These studies are likely to initiate a new era of effector research that will clarify the disease-promoting rather than defense-suppressing function of effectors, a molecular rather than genetic distinction.


Subject(s)
Plants/metabolism , Sugars/metabolism , Water/metabolism , Plant Immunity
12.
Dev Cell ; 44(4): 500-511.e4, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29396117

ABSTRACT

Membrane vesicles delivered to the cell-division plane fuse with one another to form the partitioning membrane during plant cytokinesis, starting in the cell center. In Arabidopsis, this requires SNARE complexes involving the cytokinesis-specific Qa-SNARE KNOLLE. However, cytokinesis still occurs in knolle mutant embryos, suggesting contributions from KNOLLE-independent SNARE complexes. Here we show that Qa-SNARE SYP132, having counterparts in lower plants, functionally overlaps with the flowering plant-specific KNOLLE. SYP132 mutation causes cytokinesis defects, knolle syp132 double mutants consist of only one or a few multi-nucleate cells, and SYP132 has the same SNARE partners as KNOLLE. SYP132 and KNOLLE also have non-overlapping functions in secretion and in cellularization of the embryo-nourishing endosperm resulting from double fertilization unique to flowering plants. Evolutionarily ancient non-specialized SNARE complexes originating in algae were thus amended by the appearance of cytokinesis-specific SNARE complexes, meeting the high demand for membrane-fusion capacity during endosperm cellularization in angiosperms.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Membrane/metabolism , Cytokinesis/physiology , Magnoliopsida/metabolism , Membrane Fusion/physiology , SNARE Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Magnoliopsida/genetics , Magnoliopsida/growth & development , Mutation , Protein Transport , SNARE Proteins/genetics
13.
Plant J ; 92(3): 375-385, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28792633

ABSTRACT

Intracellular membrane fusion is effected by SNARE proteins that reside on adjacent membranes and form bridging trans-SNARE complexes. Qa-SNARE members of the Arabidopsis SYP1 family are involved in membrane fusion at the plasma membrane or during cell plate formation. Three SYP1 family members have been classified as pollen-specific as inferred from gene expression profiling studies, and two of them, SYP124 and SYP125, are confined to angiosperms. The SYP124 gene appears genetically unstable, whereas its sister gene SYP125 shows essentially no variation among Arabidopsis accessions. The third pollen-specific member SYP131 is sister to SYP132, which appears evolutionarily conserved in the plant lineage. Although evolutionarily diverse, the three SYP1 proteins are functionally overlapping in that only the triple mutant syp124 syp125 syp131 shows a specific and severe male gametophytic defect. While pollen development and germination appear normal, pollen tube growth is arrested during passage through the style. Our results suggest that angiosperm pollen tubes employ a combination of ancient and modern Qa-SNARE proteins to sustain their growth-promoting membrane dynamics during the reproductive process.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Qa-SNARE Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Evolution , Cell Membrane/metabolism , Cell Proliferation , Gene Expression Profiling , Organ Specificity , Phylogeny , Pollination , Protein Transport , Qa-SNARE Proteins/genetics
14.
Proc Natl Acad Sci U S A ; 114(35): E7385-E7394, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28808003

ABSTRACT

Plants evolved intracellular immune receptors that belong to the NOD-like receptor (NLR) family to recognize the presence of pathogen-derived effector proteins. NLRs possess an N-terminal Toll-like/IL-1 receptor (TIR) or a non-TIR domain [some of which contain coiled coils (CCs)], a central nucleotide-binding (NB-ARC) domain, and a C-terminal leucine-rich repeat (LRR). Activation of NLR proteins results in a rapid and high-amplitude immune response, eventually leading to host cell death at the infection site, the so-called hypersensitive response. Despite their important contribution to immunity, the exact mechanisms of NLR activation and signaling remain unknown and are likely heterogenous. We undertook a detailed structure-function analysis of the plasma membrane (PM)-localized CC NLR Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) using both stable transgenic Arabidopsis and transient expression in Nicotiana benthamiana We report that immune signaling is induced only by activated full-length PM-localized RPM1. Our interaction analyses demonstrate the importance of a functional P-loop for in planta interaction of RPM1 with the small host protein RPM1-interacting protein 4 (RIN4), for constitutive preactivation and postactivation self-association of RPM1 and for proper PM localization. Our results reveal an additive effect of hydrophobic conserved residues in the CC domain for RPM1 function and RPM1 self-association and their necessity for RPM1-RIN4 interaction. Thus, our findings considerably extend our understanding of the mechanisms regulating NLR activation at, and signaling from, the PM.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Plant Immunity/immunology , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/metabolism , Immunity, Innate/immunology , Intracellular Signaling Peptides and Proteins , NLR Proteins/immunology , Plant Diseases/immunology , Protein Binding , Pseudomonas syringae/physiology , Receptors, Immunologic/metabolism , Signal Transduction , Nicotiana/metabolism
15.
Nat Genet ; 49(9): 1364-1372, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28740263

ABSTRACT

Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr9.02, associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.


Subject(s)
Disease Resistance/genetics , Genes, Plant/genetics , Methyltransferases/genetics , Plant Diseases/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Apoptosis/genetics , Chromosome Mapping/methods , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Lignin/metabolism , Methyltransferases/metabolism , Microscopy, Fluorescence , Mutation , Phenylpropionates/metabolism , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Zea mays/metabolism , Zea mays/microbiology
16.
Proc Natl Acad Sci U S A ; 114(10): E2053-E2062, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28137883

ABSTRACT

Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll-interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR-TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that "truncated" NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/chemistry , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Binding Sites , Cell Death/genetics , Cell Death/immunology , Crystallography, X-Ray , Erwinia/pathogenicity , Erwinia/physiology , Host-Pathogen Interactions , Models, Molecular , Mutation , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Signal Transduction , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
17.
Proc Natl Acad Sci U S A ; 113(45): 12619-12621, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27803318
18.
New Phytol ; 210(3): 960-73, 2016 May.
Article in English | MEDLINE | ID: mdl-27074399

ABSTRACT

Nucleotide-binding leucine-rich repeat proteins (NLRs) serve as intracellular immune receptors in animals and plants. Sensor NLRs perceive pathogen-derived effector molecules and trigger robust host defense. Recent studies revealed the role of three coiled-coil-type NLRs (CNLs) of the ADR1 family - ADR1, ADR1-L1 and ADR1-L2 - as redundant helper NLRs, whose function is required for defense mediated by multiple sensor NLRs. From a mutant snc1-enhancing (MUSE) forward genetic screen in Arabidopsis targeted to identify negative regulators of snc1 that encodes a TIR-type NLR (TNL), we isolated two alleles of muse15, both carrying mutations in ADR1-L1. Interestingly, loss of ADR1-L1 also enhances immunity-related phenotypes in other autoimmune mutants including cpr1, bal and lsd1. This immunity-enhancing effect is not mediated by increased SNC1 protein stability, nor is it fully dependent on the accumulation of the defense hormone salicylic acid (SA). Transcriptional analysis revealed an upregulation of ADR1 and ADR1-L2 in the adr1-L1 background, which may overcompensate the loss of ADR1-L1, resulting in enhanced immunity. Interestingly, autoimmunity of snc1 and chs2, which encode typical TNLs, is fully suppressed by the adr1 triple mutant, suggesting that the ADRs are required for TNL downstream signaling. This study extends our knowledge on the interplay among ADRs and reveals their complexity in defense regulation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/immunology , Gene Expression Regulation, Plant , Multigene Family , Plant Immunity , Proteins/genetics , Alleles , Arabidopsis Proteins/metabolism , Cloning, Molecular , Genes, Plant , Genetic Testing , Leucine-Rich Repeat Proteins , Models, Biological , Mutation/genetics , Phenotype , Proteins/metabolism , Salicylic Acid/metabolism , Transcription, Genetic , Up-Regulation/genetics
19.
PLoS Pathog ; 11(2): e1004674, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25719542

ABSTRACT

Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR) proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR). Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC), a nucleotide binding (NB-ARC) and a leucine rich repeat (LRR) domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.


Subject(s)
Plant Proteins , Proteins , Zea mays/genetics , Amino Acid Sequence , Cloning, Molecular , Disease Resistance/genetics , Genetic Loci , Leucine-Rich Repeat Proteins , Mutagenesis, Site-Directed , Plant Diseases/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/physiology , Plants, Genetically Modified , Protein Structure, Tertiary , Proteins/chemistry , Proteins/genetics , Proteins/physiology , Signal Transduction , Structure-Activity Relationship , Zea mays/immunology , Zea mays/metabolism
20.
Plant Cell ; 27(2): 463-79, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25681156

ABSTRACT

Membrane trafficking is required during plant immune responses, but its contribution to the hypersensitive response (HR), a form of programmed cell death (PCD) associated with effector-triggered immunity, is not well understood. HR is induced by nucleotide binding-leucine-rich repeat (NB-LRR) immune receptors and can involve vacuole-mediated processes, including autophagy. We previously isolated lazarus (laz) suppressors of autoimmunity-triggered PCD in the Arabidopsis thaliana mutant accelerated cell death11 (acd11) and demonstrated that the cell death phenotype is due to ectopic activation of the LAZ5 NB-LRR. We report here that laz4 is mutated in one of three VACUOLAR PROTEIN SORTING35 (VPS35) genes. We verify that LAZ4/VPS35B is part of the retromer complex, which functions in endosomal protein sorting and vacuolar trafficking. We show that VPS35B acts in an endosomal trafficking pathway and plays a role in LAZ5-dependent acd11 cell death. Furthermore, we find that VPS35 homologs contribute to certain forms of NB-LRR protein-mediated autoimmunity as well as pathogen-triggered HR. Finally, we demonstrate that retromer deficiency causes defects in late endocytic/lytic compartments and impairs autophagy-associated vacuolar processes. Our findings indicate important roles of retromer-mediated trafficking during the HR; these may include endosomal sorting of immune components and targeting of vacuolar cargo.


Subject(s)
Apoptosis , Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/immunology , Multiprotein Complexes/metabolism , Plant Immunity , Arabidopsis/genetics , Autophagy , Disease Resistance/immunology , Endocytosis , Genes, Plant , Green Fluorescent Proteins/metabolism , Multivesicular Bodies/metabolism , Mutation , Plant Diseases/immunology , Protein Binding , Protein Subunits/metabolism , Protein Transport , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...