Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35336916

ABSTRACT

The H9N2 virus continues to spread in wild birds and poultry worldwide. At the beginning of 2016, the H9N2 Avian influenza virus (AIV) was detected in Morocco for the first time; despite the implementation of vaccination strategies to control the disease, the virus has become endemic in poultry in the country. The present study was carried out to investigate the origins, zoonotic potential, as well as the impact of vaccination on the molecular evolution of Moroccan H9N2 viruses. Twenty-eight (28) H9N2 viruses collected from 2016 to 2021 in Moroccan poultry flocks were isolated and their whole genomes sequenced. Phylogenetic and evolutionary analyses showed that Moroccan H9N2 viruses belong to the G1-like lineage and are closely related to viruses isolated in Africa and the Middle East. A high similarity among all the 2016-2017 hemagglutinin sequences was observed, while the viruses identified in 2018-2019 and 2020-2021 were separated from their 2016-2017 ancestors by long branches. Mutations in the HA protein associated with antigenic drift and increased zoonotic potential were also found. The Bayesian phylogeographic analyses revealed the Middle East as being the region where the Moroccan H9N2 virus may have originated, before spreading to the other African countries. Our study is the first comprehensive analysis of the evolutionary history of the H9N2 viruses in the country, highlighting their zoonotic potential and pointing out the importance of implementing effective monitoring systems.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Bayes Theorem , Chickens , Influenza in Birds/epidemiology , Phylogeny , Poultry , Poultry Diseases/epidemiology
2.
Avian Dis ; 61(3): 378-386, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28957008

ABSTRACT

Newcastle disease (ND) is still a major poultry disease worldwide. Vaccination remains the principal method of controlling ND in endemic countries. Various vaccination strategies, including the use of recently developed recombinant vaccines, have been used to control it. Recombinant vaccines that use the herpesvirus of turkey (HVT) as a vector to express one of the key antigens of Newcastle disease virus (NDV) have been developed to overcome some of the drawbacks related to the use of conventional vaccines. HVT as a vector appears to have unique beneficial characteristics: it is extremely safe, it is not affected by the presence of maternally derived antibodies, and therefore can be applied in the hatchery either in ovo or to day-old chicks. Due to its persistence in the bird, the HVT vector can be expected to induce life-long immune stimulation. In the present study, the efficacy of an HVT-based vector vaccine expressing the F gene of NDV (rHVT-F) was tested against a velogenic genotype IV NDV challenge in commercial turkeys with high levels of maternal antibodies (8.7 ± 0.8 log2 hemagglutination inhibition titer). The birds were vaccinated on the day of hatch by the subcutaneous route. Development of a humoral immune response to vaccination was detectable from 4 weeks of age by ELISA. The challenge strain used represents recent NDV genotype IV field strains from Morocco. Challenge with this strain induced ND-specific clinical signs and stunting without subsequent mortality in the non-vaccinated birds, whereas the vaccinated turkey poults showed protection as early as 3 weeks of age based on lack of clinical signs, better body weight gain, and reduction of challenge virus shedding. This is the first reported efficacy study of an HVT-vectored ND vaccine against a velogenic NDV challenge in commercial turkeys.


Subject(s)
Herpesvirus 1, Meleagrid/immunology , Immunity, Innate , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/immunology , Animals , Newcastle Disease/virology , Poultry Diseases/virology , Turkeys , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...