Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 173(Pt A): 112940, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537571

ABSTRACT

The development of desalination has been essential to the rapid economic development of the countries bordering the Arabian Gulf. The current production capacity of sea water desalination plants drawing water from Gulf is over 20 million m3 day-1, which may rise to 80 million m3 day-1 by 2050. Whilst supporting aspects of sustainable development related to water and sanitation, desalination impacts the marine environment through impingement and entrainment of organisms in intakes, and through thermal, brine and chemical discharges. This may compromise other objectives for sustainable development related to sustainable use of the oceans. Under business as usual scenarios, by 2050, the impact of individual desalination plants will combine causing a regional scale impact. Without mitigating actions to avoid the business as usual scenario, by 2050, desalination in combination with climate change, will elevate coastal water temperatures across more than 50% of the Gulf by at least 3 °C, and a volume of water equivalent to more than a third of the total volume of water between 0 and 10 m deep will pass through desalination plants each year. This will adversely impact the coastal ecosystem of the Gulf, with impacts on biodiversity, fisheries and coastal communities and may cause potential loss of species and habitats from the Gulf. Given the significant implications of these preliminary findings, and in light of the precautionary approach to management, it is recommended that mitigating options addressing behavioural, regulatory and technological change are rapidly evaluated and implemented to avoid the development of desalination in the region along a business as usual pathway, and multidisciplinary research studies should be conducted to reduce uncertainty in predictions of future impacts.


Subject(s)
Ecosystem , Sustainable Development , Biodiversity , Climate Change , Seawater
2.
Saudi J Biol Sci ; 26(7): 1753-1757, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31762654

ABSTRACT

Textile industry represents an important source of toxic substances rejected in environment. Indeed, effluent of these industries contains dyes and chemicals. They are rejected in environment without any treatment. The aim of this work is to evaluate ecotoxicological effect of industrial textile effluents on the sludge harvested from activated sludge treatment plant of Marrakech city (Morocco). For this, we are interested in determining the inhibition condition that corresponds to 50% decrease of bacterial activity in sludge. Obtained results showed that inhibition percentage of bacterial activity depends narrowly on contact time and on added effluent volume, until a limit concentration where there is no degradation of substratum. In fact, substratum degradation speed shows about 65 times decrease when 80% (v/v) of textile wastewater is added, in comparison with the controlled one. Consequently the inhibition constant (Ki) that corresponds to 50% of bacterial inhibition activity is estimated to 0.65 mg l-1 of dye. These studies confirm a real ecotoxicological risk of these effluents. Therefore, a treatment is mandatory before their rejection in environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...