Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 16(151): 20180793, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30958193

ABSTRACT

The present study deals with the characterization of bone quality in a sheep model of postmenopausal osteoporosis. Sheep were sham operated ( n = 7), ovariectomized ( n = 6), ovariectomized and treated with deficient diet ( n = 8) or ovariectomized, treated with deficient diet and glucocorticoid injections ( n = 7). The focus of the study is on the microscopic properties at tissue level. Microscopic mechanical properties of osteoporotic bone were evaluated by a combination of biomechanical testing and mathematical modelling. Sample stiffness and strength were determined by compression tests and finite-element analysis of stress states was conducted. From this, an averaged microscopic Young's modulus at tissue level was determined. Trabecular structure as well as mineral and collagen distribution in samples of sheep vertebrae were analysed by micro-computed tomography and time-of-flight secondary ion mass spectrometry. In the osteoporotic sheep model, a disturbed fibril structure in the triple treated group was observed, but bone loss only occurred in form of reduced trabecular number and thickness and cortical decline, while quality of the residual bone was preserved. The preserved bone tissue properties in the osteoporotic sheep model allowed for an estimation of bone strength which behaves similar to the human case.


Subject(s)
Bone Density , Elastic Modulus , Osteoporosis , Spine , X-Ray Microtomography , Animals , Disease Models, Animal , Female , Finite Element Analysis , Humans , Osteoporosis/diagnostic imaging , Osteoporosis/metabolism , Sheep , Spine/diagnostic imaging , Spine/metabolism
2.
Osteoarthritis Cartilage ; 26(9): 1225-1235, 2018 09.
Article in English | MEDLINE | ID: mdl-29908226

ABSTRACT

OBJECTIVES: Age-related bone loss is associated with bone marrow adiposity. Adipokines (e.g., visfatin, resistin, leptin) are adipocyte-derived factors with immunomodulatory properties and might influence differentiation of bone marrow-derived mesenchymal stem cells (MSC) in osteoarthritis (OA) and osteoporosis (OP). Thus, the presence of adipokines and MMPs in bone marrow and their effects on MSC differentiation were analyzed. METHODS: MSC and ribonucleic acid (RNA) were isolated from femoral heads after hip replacement surgery of OA or osteoporotic femoral neck fracture (FF) patients. Bone structural parameters were evaluated by microcomputed tomography (µCT). MSC were differentiated towards adipocytes or osteoblasts with/without adipokines. Gene expression (adipokines, bone marker genes, MMPs, TIMPs) and cytokine production was evaluated by realtime-polymerase chain reaction (realtime-PCR) and enzyme-linked immunosorbent assay (ELISA). Matrix mineralization was quantified using Alizarin red S staining. RESULTS: µCT showed an osteoporotic phenotype of FF compared to OA bone (reduced trabecular thickness and increased ratio of bone surface vs volume of solid bone). Visfatin and leptin were increased in FF vs OA. Visfatin induced the secretion of IL-6, IL-8, and MCP-1 during osteogenic and adipogenic differentiation. In contrast to resistin and leptin, visfatin increased MMP2 and MMP13 during adipogenesis. In osteogenically differentiated cells, MMPs and TIMPs were reduced by visfatin. Visfatin significantly increased matrix mineralization during osteogenesis, whereas collagen type I expression was reduced. CONCLUSION: Visfatin-mediated increase of matrix mineralization and reduced collagen type I expression could contribute to bone fragility. Visfatin is involved in impaired bone remodeling at the adipose tissue/bone interface through induction of proinflammatory factors and dysregulated MMP/TIMP balance during MSC differentiation.


Subject(s)
Adipogenesis/genetics , Cytokines/drug effects , Mesenchymal Stem Cells/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , Adipogenesis/drug effects , Bone Density , Cell Differentiation/genetics , Cells, Cultured , Enzyme-Linked Immunosorbent Assay/methods , Female , Femoral Fractures/pathology , Gene Expression Regulation , Humans , Male , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteoporosis/physiopathology , Osteoporotic Fractures/pathology , Real-Time Polymerase Chain Reaction/methods
3.
Eur Spine J ; 23(11): 2437-48, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25077942

ABSTRACT

PURPOSE: In humans, glucocorticoid-induced osteoporosis is the most common cause of medication-induced osteoporosis. Recent clinical data suggest that glucocorticoid therapy increases the risk of vertebral fractures within a short treatment period. Therefore, this study aimed at investigating vertebral bone in a rat model of glucocorticoid-induced postmenopausal osteoporosis. METHODS: Fifty Sprague-Dawley rats were randomly assigned into three groups: 1) untreated controls, 2) Sham-operated group, and 3) ovariectomized rats treated with glucocorticoid (dexamethasone) for 3 months (3M) after recovery from bilateral ovariectomy. Osteoporotic bone status was determined by means of the gold standard dual energy X-ray absorptiometry (DEXA) scan. Vertebral bodies were examined using µCT, histological analysis, mRNA expression analysis, and biomechanical compression testing. Further systemic effects were studied biochemically using serum marker analysis. RESULTS: Dexamethasone treatment showed at 3M a significantly lower bone mineral density in ovariectomized rats compared to Sham-operated control (p < 0.0001) as analyzed in vivo by DEXA. Furthermore, Z scores reached levels of -5.7 in the spine indicating sever osteoporotic bone status. Biomechanical testing of compression stability indicated a lower functional competence (p < 0.0001) in the spine of treated rats. µCT analysis showed significant reduction of bone volume density (BV/TV%; p < 0.0001), significantly enhanced trabecular spacing (Tb.Sp; p < 0.0001) with less trabecular number (Tb.N; p < 0.001) and complete loss of trabecular structures in glucocorticoid-treated ovariectomized rats. Histological analysis by osteoblast and osteoclast activities reflected a higher bone catabolism reflected by osteoclast counts by TRAP (p < 0.019) and lower bone catabolism indicated by ALP-stained area (p < 0.035).Serum analysis showed a significant increase in osteocalcin (p < 0.0001), osteopontin (p < 0.01) and insulin (p < 0.001) at 3M. Expression analysis of molecular markers in the vertebral body revealed lower expression in tenascin C in the OVX-steroid animals at 3M. CONCLUSIONS: Short-term glucocorticoid treatment of ovariectomized rats indicates according to DEXA standards a severe osteoporotic bone status in vertebral bone. Nonetheless, dysfunctional bone anabolism and enhanced bone catabolism are observed. Alterations of bone extracellular matrix proteins that correlate to inferior mechanical stability and affected microstructure were noticed and suggest further investigation. Treatment with dexamethasone was also seen to affect insulin and osteopontin levels and thus osteoblast function and maturation. This described animal model presents a recapitulation of clinically obtained data from early phase glucocorticoid-induced osteoporosis observed in patients.


Subject(s)
Dexamethasone/adverse effects , Glucocorticoids/adverse effects , Osteoporosis/chemically induced , Absorptiometry, Photon , Animals , Bone Density , Cell Count , Dexamethasone/administration & dosage , Female , Glucocorticoids/administration & dosage , Insulin/blood , Models, Animal , Osteocalcin/blood , Osteoclasts/pathology , Osteopontin/blood , Osteoporosis/pathology , Ovariectomy , Rats, Sprague-Dawley
4.
Bone ; 51(4): 651-60, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22868293

ABSTRACT

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease resulting from inactivating mutations in the gene encoding the protein neurofibromin. NF1 manifests as a heritable susceptibility to tumours of neural tissue mainly located in the skin (neurofibromas) and pigmented skin lesions. Besides these more common clinical manifestations, many NF1 patients (50%) have abnormalities of the skeleton. Long bones are often affected (usually the tibia) and the clinical signs range from bowing to spontaneous fractures and non-unions. Here we present the analysis of bone fracture healing in the Nf1(Prx1)-knock-out mouse, a model of NF1 long bone dysplasia. In line with previously reported cortical bone injury results, fracture healing was impaired in Nf1(Prx1) mice. We showed that the defective fracture healing in Nf1(Prx1) mice is characterized by diminished cartilaginous callus formation and a thickening of the periosteal bone. These changes are paralleled by fibrous tissue accumulation within the fracture site. We identify a population of fibrous tissue cells within the Nf1 deficient fracture as alpha-smooth muscle actin positive myofibroblasts. Additionally, histological and in-situ hybridization analysis reveal a direct contact of the fracture site with muscle fascia, suggesting a possible involvement of muscle derived cells in the fracture deterioration.


Subject(s)
Bone Diseases, Developmental/pathology , Disease Models, Animal , Fracture Healing , Genes, Neurofibromatosis 1 , Tibia/pathology , Actins/metabolism , Animals , Bone Diseases, Developmental/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/pathology , Tibia/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...