Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 457: 218-24, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26188728

ABSTRACT

The paper focuses on the removal of p-nitrophenol by an adsorption process. A magnetic adsorbent was synthesized by encapsulation of magnetic functionalized nanoparticles using alginate as a green biopolymer matrix. A cationic surfactant, cetylpyridinium chloride (CPyCl), was used to confer a hydrophobic character to the magnetic beads and thus to promote their adsorption efficiency. The effect of different parameters such as initial concentrations of both PNP and CPyCl, contact time and solution pH value on the adsorption of PNP in the presence of CPyCl was investigated. It should be noted that combination of magnetic and adsorption properties in a same material is an interesting challenge which could overcome the recovery problems of pollutant-loaded adsorbent.

2.
J Colloid Interface Sci ; 432: 182-9, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25086393

ABSTRACT

Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants.

3.
Chemistry ; 17(25): 7095-104, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21547959

ABSTRACT

Au supported on CeO(2) prepared by deposition-precipitation with urea leads to a basic catalyst. Au acts in two ways as surface modifier. First, Au selectively interacts with Ce(4+) cations by either blocking access to or reducing Ce(4+) to Ce(3+). Second, the resulting Au atoms (presumably as Au(+) ions) act as soft, weak Lewis acid sites stabilizing carbanion intermediates and enhancing hydride abstraction in the dehydrogenation of alcohols. In consequence, the thus-synthesized basic catalyst catalyzes the dehydrogenation of propan-2-ol to acetone with high efficiency and without notable deactivation. Additionally, the dehydration pathway of propan-2-ol is eliminated, as Au also quantitatively blocks access to strongly acidic Ce(4+) ions or reduces them to Ce(3+).

SELECTION OF CITATIONS
SEARCH DETAIL
...