Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 5(21): 5838-5849, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881698

ABSTRACT

The growth of AuCu nanoparticles obtained by depositing Cu atoms on starting seeds of pure Au and on mixed AuCu seeds is studied by molecular dynamics simulations. Depending on the shape of the seed, its composition and the growth temperature, different growth pathways are observed, in which several types of structural transformations take place. The final growth structures comprise Au@Cu core@shell arrangements as well as Janus-like structures with patchy surfaces. The results of the growth simulations are rationalized in terms of the activation of different diffusion processes, both on the surface and inside the growing clusters. These diffusion processes regulate structural transitions between different motifs and the occurrence of dewetting phenomena. The simulation results show that depositon of Cu atoms on pure Au or mixed AuCu seed can be an effective tool for producing clusters with uncommon surface atom arrangements of potential interest for catalysis.

2.
Nanoscale Horiz ; 9(1): 143-147, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37877366

ABSTRACT

The multi-dimensional potential energy surface (PES) of a nanoparticle, such as a bare cluster of metal atoms, controls both the structure and dynamic behaviour of the particle. These properties are the subject of numerous theoretical simulations. However, quantitative experimental measurements of critical PES parameters are needed to regulate the models employed in the theoretical work. Experimental measurements of parameters are currently few in number, while model parameters taken from bulk systems may not be suitable for nanosystems. Here we describe a new measurement methodology, in which the isomer structures of a single deposited nanocluster are obtained frame-by-frame in an aberration-corrected scanning transmission electron microscope (ac-STEM) in high angle annular dark field (HAADF) mode. Several gold clusters containing 309 ± 15 atoms were analysed individually after deposition from a mass-selected cluster source onto an amorphous carbon film. The main isomers identified are icosahedral (Ih), decahedral (Dh) and face-centred-cubic (fcc) (the bulk structure), alongside many amorphous (glassy) structures. The results, which are broadly consistent with static ac-STEM measurements of an ensemble of such clusters, open the way to dynamic measurements of many different nanoparticles of diverse sizes, shapes and compositions.

3.
Chem Commun (Camb) ; 59(23): 3331-3338, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36861398

ABSTRACT

In this article, we present a summary of the Faraday Discussion that took place on September 21-23, 2022 in London, UK. The primary goal of this event was to promote and discuss the recent developments in the field of nanoalloys. Here we briefly outline each scientific session as well as other conference events.

4.
Nanoscale ; 15(5): 2384-2393, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36648302

ABSTRACT

The CuAu system is characterized by a large lattice mismatch which causes a misfit strain in its core@shell architectures. Here we simulate the formation of Cu@Au core@shell nanoparticles by Au deposition on a preformed seed, and we study the effect of the shape and composition of the starting seed on the growth pathway. Three geometric shapes of the starting seed are considered: truncated octahedra, decahedra and icosahedra. For each shape, we consider two compositions, pure Cu and CuAu, at equicomposition and intermixed chemical ordering. Our results show that the shape and composition of the seed have significant effects on the growth pathways of Cu@Au core@shell nanoparticles. When starting with icosahedral seeds, the growing structure stays in that motif always. When starting with truncated octahedral and decahedral seeds, we have observed that there is a clear difference between the pure and intermixed seeds. For pure seeds, the growth often leads to exotic structures that are obtained after some structural transformations. For mixed seeds, the growth leads to quite regular structures resembling those obtained for pure metals. These growth pathways originate from strain relaxation mechanisms, which are rationalized by calculating the atomic level stress.

5.
ACS Nano ; 17(1): 587-596, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36537367

ABSTRACT

The solidification of AgCo, AgNi, and AgCu nanodroplets is studied by molecular dynamics simulations in the size range of 2-8 nm. All these systems tend to phase separate in the bulk solid with surface segregation of Ag. Despite these similarities, the simulations reveal clear differences in the solidification pathways. AgCo and AgNi already separate in the liquid phase, and they solidify in configurations close to equilibrium. They can show a two-step solidification process in which Co-/Ni-rich parts solidify at higher temperatures than the Ag-rich part. AgCu does not separate in the liquid and solidifies in one step, thereby remaining in a kinetically trapped state down to room temperature. The solidification mechanisms and the size dependence of the solidification temperatures are analyzed, finding qualitatively different behaviors in AgCo/AgNi compared to AgCu. These differences are rationalized by an analytical model.

6.
Nanoscale Horiz ; 7(8): 883-889, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35722927

ABSTRACT

The growth pathways from tetrahedral to multiply twinned gold nanoparticles in the gas phase are studied by molecular dynamics simulations supported by density functional theory calculations. Our results show that the growth from a tetrahedron to a multiple twin can take place by different pathways: directly from a tetrahedron to a decahedron (Th → Dh pathway), directly from a tetrahedron to an icosahedral fragment (Th → Ih), and from a tetrahedron to an icosahedron passing through an intermediate decahedron (Th → Dh → Ih). The simulations allow to determine the key atomic-level growth mechanism at the origin of twinning in metal nanoparticles. This mechanism is common to all these pathways and starts from the preferential nucleation of faulted atomic islands in the vicinity of facet edges, leading to the formation and stabilization of twin planes and of fivefold symmetry axes.


Subject(s)
Gold , Metal Nanoparticles , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...