Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1193509, 2023.
Article in English | MEDLINE | ID: mdl-37404862

ABSTRACT

Background: Naringenin (NA) is a natural flavonoid used in the formulation of a wide range of pharmaceutical, fragrance, and cosmetic products. In this research, NA was extracted from Searsia tripartita using an environmentally friendly, high efficiency extraction method: an ultrasound-assisted extraction with deep eutectic solvents (UAE-DES). Methods: Six natural deep eutectic solvent systems were tested. Choline chloride was used as the hydrogen bond acceptor (HBA), and formic acid, ethylene glycol, lactic acid, urea, glycerol, and citric acid were used as hydrogen bond donors (HBD). Results: Based on the results of single-factor experiments, response surface methodology using a Box-Behnken design was applied to determine the optimal conditions for UAE-DES. According to the results, the optimal NA extraction parameters were as follows: DES-1 consisted of choline chloride (HBA) and formic acid (HBD) in a mole ratio of 2:1, an extraction time of 10 min, an extraction temperature of 50°C, an ultrasonic amplitude of 75 W, and a solid-liquid ratio of 1/60 g/mL. Extracted NA was shown to inhibit the activity of different enzymes in vitro, including α-amylase, acetylcholinesterase, butyrylcholinesterase, tyrosinase, elastase, collagenase, and hyaluronidase. Conclusion: Thus, the UAE-DES technique produced high-efficiency NA extraction while retaining bioactivity, implying broad application potential, and making it worthy of consideration as a high-throughput green extraction method.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36978973

ABSTRACT

Isoquercetin (ISQ) is reported to be a powerful antioxidant with extremely high bioavailability and structural stability compared to aglycone quercetin. Despite this, it is not well studied due to the limited methods for its extraction. With the growing interest in the research and analysis of ISQ-rich herbs, there is a need to optimize an efficient and rapid method for their extraction. In the present study, the ultrasound-assisted extraction of ISQ from Ephedra alata Decne was optimized by a response surface methodology (RSM) using high-performance liquid chromatography as a separation method. The best possible ranges for extraction time (10-30 min), temperature (50-70 °C), ultrasonic power (60-90 W), solvent-to-solid ratio (50-70 mL/g), and ethanol concentration (50-70%) were determined using a single factor analysis. Subsequently, an optimization of the extraction conditions was performed with RSM using the Box-Behnken design. An ultrasonication time of 10 min, a temperature of 60 °C, a power of 75 W, a solvent-to-solid ratio of 60 mL/g, and an ethanol concentration of 70% were determined to be the optimal conditions for the highest recovery of isoquercetin (1033.96 ± 3.28 µg/g). Furthermore, E. alata powder morphology (using a scanning electron microscope), antioxidant activities, and the inhibition potential of key enzymes involved in skin aging (elastase and collagenase), hyperpigmentation (tyrosinase), diabetes (α-amylase), inflammation (hyaluronidase), and neurodegenerative disorders (cholinesterase) were determined and compared with those using the Soxhlet method. This study established a highly efficient method for ISQ extraction and suggested several potential applications of ISQ in the pharmaceutical and cosmetics industries.

3.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674916

ABSTRACT

Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.


Subject(s)
Antioxidants , Cosmeceuticals , Antioxidants/pharmacology , Antioxidants/metabolism , Cosmeceuticals/metabolism , Plants/metabolism , Biotechnology/methods
4.
Front Plant Sci ; 13: 926653, 2022.
Article in English | MEDLINE | ID: mdl-35873968

ABSTRACT

Cacti are one of the most significant and diversified groups of angiosperms, distributed and cultivated globally, mostly in semi-arid, arid, and the Mediterranean climate regions. Conventionally, they are propagated by seeds or through vegetative propagation via rooted offshoots or grafting. However, these multiplication procedures remain insufficient for mass propagation. In vitro culture techniques are utilized to mass propagate endangered and commercial cacti species. These include somatic embryogenesis and plant regeneration through indirect or direct organogenesis. The latter is a promising tool for commercial clonal propagation of high-value species and has been successfully implemented for several species, such as Mammillaria, Hylocereus, Cereus, Echinocereus, and Ariocarpus. However, its success depends on explant type, basal nutrient formulation of culture medium, and types and concentrations of plant growth regulators. This study aimed to assess the potential of in vitro propagation methods applied to cacti species and discuss the different factors affecting the success of these methods. This study has also highlighted the insufficient work on Opuntia species for mass propagation through axillary buds' proliferation. The development of an efficient micropropagation protocol is thus needed to meet the supply of increasing demand of Opuntia species for human consumption as fruit, animal feed, and ecological restoration in semi-arid and arid zones.

5.
Molecules ; 27(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408473

ABSTRACT

This study aimed to compare the influence of extraction methods on the pharmaceutical and cosmetic properties of medicinal and aromatic plants (MAPs). For this purpose, the dried plant materials were extracted using advanced (microwave (MAE), ultrasonic (UAE), and homogenizer (HAE) assisted extractions) and conventional techniques (maceration, percolation, decoction, infusion, and Soxhlet). The tyrosinase, elastase, α-amylase, butyryl, and acetylcholinesterase inhibition were tested by using L-3,4 dihydroxy-phenylalanine, N-Succinyl-Ala-Ala-p-nitroanilide, butyryl, and acetylcholine as respective substrates. Antioxidant activities were studied by ABTS, DPPH, and FRAP. In terms of extraction yield, advanced extraction techniques showed the highest values (MAE > UAE > HAE). Chemical profiles were dependent on the phenolic compounds tested, whereas the antioxidant activities were always higher, mainly in infusion and decoction as a conventional technique. In relation to the pharmaceutical and cosmetic properties, the highest inhibitory activities against α-amylase and acetylcholinesterase were observed for Soxhlet and macerated extracts, whereas the highest activity against tyrosinase was obtained with MAE > maceration > Soxhlet. Elastase and butyrylcholinesterase inhibitory activities were in the order of Soxhlet > maceration > percolation, with no activities recorded for the other tested methods. In conclusion, advanced methods afford an extract with high yield, while conventional methods might be an adequate approach for minimal changes in the biological properties of the extract.


Subject(s)
Plant Extracts , Plants, Medicinal , Acetylcholinesterase , Antioxidants/chemistry , Antioxidants/pharmacology , Butyrylcholinesterase , Monophenol Monooxygenase , Pancreatic Elastase , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases
6.
J Ethnopharmacol ; 259: 112950, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32450235

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Ziziphus (Rhamnaceae) contains 58 accepted species that are extensively used by local people and medicinal practitioners in arid and semi-arid regions for the treatment of diarrhoea, dysentery, cholera, diabetic, hypertension, inflammation, intestinal spasm, liver, malaria and other diseases. Aims of this review: This review article documents and critically assesses, for the first time; up to date categorized information about botanical traits, distribution, traditional uses, phytochemistry, pharmacological and toxicological effects of Ziziphus species. METHODS: Information was collected systematically from electronic scientific databases including Google Scholar, Science Direct, PubMed, Web of Science, ACS Publications, Elsevier, SciFinder, Wiley Online Library and CNKI, as well as other literature sources (e.g., books). KEY FINDINGS: The phytochemical investigations of plants of this genus have led to the identification of about 431 chemical constituents. Cyclopeptide alkaloids and flavonoids are the predominant groups. The crude extracts and isolated compounds exhibit a wide range of in vitro and in vivo pharmacologic effects, including antimicrobial, antitumour, antidiabetic, antidiarrhoeal, anti-inflammatory, antipyretic, antioxidant and hepatoprotective activities. Toxicity studies indicate that Ziziphus species seems to be non-toxic at typical therapeutic doses. CONCLUSION: Phytochemical and pharmacological studies have demonstrated that Ziziphus species are important medicinal herbs with prominent bioactivities. The focus so far has only been on ten species; however, plants of this genus can potentially yield a wide range of other products with different properties. Meticulous studies on pharmaceutical standardisation, mode of action of the active constituents and toxicity of Ziziphus species are needed to meet the growing demands of the pharmaceutical industry and to exploit their preventive and therapeutic potential fully.


Subject(s)
Medicine, Traditional , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Ziziphus , Animals , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/isolation & purification , Phytochemicals/toxicity , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Ziziphus/chemistry
7.
Methods Protoc ; 2(2)2019 May 15.
Article in English | MEDLINE | ID: mdl-31164619

ABSTRACT

Tetrahymena pyriformis (protozoa) is intensely investigated as a model organism, offering numerous advantages in comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is a vital step of any molecular experiment, here a new mixed surfactant (Sodium dodecyl sulfate (SDS) 20%/Triton X-100) was adopted for effective DNA extraction from Tetrahymena pyriformis under an easy, fast protocol. The efficiency of this technique was then compared with three widely-used alternative techniques, namely the Chelex 100 matrix, Ammonium pyrrolidine dithiocarbamate (APD) complex and SDS-chloroform methods. DNA extraction was analyzed by pulsed-field gel electrophoresis, spectral measurement, fluorometry (Qubit), restriction enzyme digestion, and polymerase chain reaction. Data analysis revealed that the quantity and quality of the recovered DNA varied depending on the applied DNA extraction method. The new method (SDS 20%/Triton X-100) was the most efficient for extracting DNA from Tetrahymena pyriformis with high integrity and purity, affordable cost, less time, and suitability for molecular applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...