Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 10557, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332264

ABSTRACT

The vacuole is the hydrolytic compartment of yeast cells and has a similar function as the lysosome of higher eukaryotes in detoxification and recycling of macromolecules. We analysed the contribution of single vacuolar enzymes to pexophagy and identified the phospholipase Atg15, the V-ATPase factor Vma2 and the serine-protease Prb1 along with the already known aspartyl-protease Pep4 (Proteinase A) to be required for this pathway. We also analysed the trafficking receptor Vps10, which is required for an efficient vacuolar targeting of the precursor form of Pep4. Here we demonstrate a novel context-dependent role of Vps10 in autophagy. We show that reduced maturation of Pep4 in a VPS10-deletion strain affects the proteolytic activity of the vacuole depending on the type and amount of substrate. The VPS10-deletion has no effect on the degradation of the cytosolic protein Pgk1 via bulk autophagy or on the degradation of ribosomes via ribophagy. In contrast, the degradation of an excess of peroxisomes via pexophagy as well as mitochondria via mitophagy was significantly hampered in a VPS10-deletion strain and correlated with a decreased maturation level of Pep4. The results show that Vps10-mediated targeting of Pep4 limits the proteolytic capacity of the vacuole in a substrate-dependent manner.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism , Aspartic Acid Endopeptidases/deficiency , Aspartic Acid Endopeptidases/genetics , Autophagy , Gene Deletion , Genes, Fungal , Macroautophagy , Models, Biological , Peroxisomes/metabolism , Phosphoglycerate Kinase/metabolism , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Vacuoles/metabolism , Vesicular Transport Proteins/deficiency , Vesicular Transport Proteins/genetics
2.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 199-213, 2019 02.
Article in English | MEDLINE | ID: mdl-30408545

ABSTRACT

Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed. In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.


Subject(s)
Peroxisomal Targeting Signals/physiology , Peroxisome-Targeting Signal 1 Receptor/metabolism , Peroxisomes/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation/genetics , Peroxins , Peroxisome-Targeting Signal 1 Receptor/genetics , Peroxisome-Targeting Signal 1 Receptor/physiology , Peroxisomes/physiology , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Protein Transport/physiology , Proteolysis , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Sequence Deletion/genetics , Signal Transduction , Ubiquitin/metabolism , Ubiquitination/physiology
3.
J Extracell Vesicles ; 7(1): 1528109, 2018.
Article in English | MEDLINE | ID: mdl-30357008

ABSTRACT

Extracellular vesicles (EVs) provide a complex means of intercellular signalling between cells at local and distant sites, both within and between different organs. According to their cell-type specific signatures, EVs can function as a novel class of biomarkers for a variety of diseases, and can be used as drug-delivery vehicles. Furthermore, EVs from certain cell types exert beneficial effects in regenerative medicine and for immune modulation. Several techniques are available to harvest EVs from various body fluids or cell culture supernatants. Classically, differential centrifugation, density gradient centrifugation, size-exclusion chromatography and immunocapturing-based methods are used to harvest EVs from EV-containing liquids. Owing to limitations in the scalability of any of these methods, we designed and optimised a polyethylene glycol (PEG)-based precipitation method to enrich EVs from cell culture supernatants. We demonstrate the reproducibility and scalability of this method and compared its efficacy with more classical EV-harvesting methods. We show that washing of the PEG pellet and the re-precipitation by ultracentrifugation remove a huge proportion of PEG co-precipitated molecules such as bovine serum albumine (BSA). However, supported by the results of the size exclusion chromatography, which revealed a higher purity in terms of particles per milligram protein of the obtained EV samples, PEG-prepared EV samples most likely still contain a certain percentage of other non-EV associated molecules. Since PEG-enriched EVs revealed the same therapeutic activity in an ischemic stroke model than corresponding cells, it is unlikely that such co-purified molecules negatively affect the functional properties of obtained EV samples. In summary, maybe not being the purification method of choice if molecular profiling of pure EV samples is intended, the optimised PEG protocol is a scalable and reproducible method, which can easily be adopted by laboratories equipped with an ultracentrifuge to enrich for functional active EVs.

4.
Int J Mol Sci ; 18(12)2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29186924

ABSTRACT

Autophagy contributes to cellular homeostasis through the degradation of various intracellular targets such as proteins, organelles and microbes. This relates autophagy to various diseases such as infections, neurodegenerative diseases and cancer. A central component of the autophagy machinery is the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which generates the signaling lipid phosphatidylinositol 3-phosphate (PtdIns3P). The catalytic subunit of this complex is the lipid-kinase VPS34, which associates with the membrane-targeting factor VPS15 as well as the multivalent adaptor protein BECLIN 1. A growing list of regulatory proteins binds to BECLIN 1 and modulates the activity of the PI3K-III complex. Here we discuss the regulation of BECLIN 1 by several different types of ubiquitination, resulting in distinct polyubiquitin chain linkages catalyzed by a set of E3 ligases. This contribution is part of the Special Issue "Ubiquitin System".


Subject(s)
Beclin-1/metabolism , Ubiquitination , Animals , Beclin-1/genetics , Humans , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
5.
Biochim Biophys Acta Proteins Proteom ; 1865(6): 703-714, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28377147

ABSTRACT

BACKGROUND: Human hippocampal area Cornu Ammonis (CA) 1 is one of the first fields in the human telencephalon showing Alzheimer disease (AD)-specific neuropathological changes. In contrast, CA2 and CA3 are far later affected pointing to functional differences, which may be accompanied by differences in proteome endowment and changes. METHODS: Human pyramidal cell layers of hippocampal areas CA1, CA2, and CA3 from neurologically unaffected individuals were excised using laser microdissection. The proteome of each individual sample was analyzed and differentially abundant proteins were validated by immuno-histochemistry. RESULTS: Comparison of CA1 to CA2 revealed 223, CA1 to CA3 197 proteins with differential abundance, among them we found motor proteins MYO5A and DYNC1H1. Extension of the study to human hippocampus slices from AD patients revealed extensive depletion of these proteins in CA1 area compared to unaffected controls. CONCLUSION: High abundance of motor proteins in pyramidal cell layers CA1 compared to CA2 and CA3 points the specific vulnerability of this hippocampal area to transport-associated changes based on microtubule dysfunction and destabilization in AD.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/metabolism , Proteomics , Aged , Aged, 80 and over , Chromatography, Liquid , Female , Humans , Immunohistochemistry , Male , Middle Aged , Tandem Mass Spectrometry
6.
Cancers (Basel) ; 7(1): 1-29, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25545884

ABSTRACT

The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes-autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

7.
PLoS One ; 9(8): e105894, 2014.
Article in English | MEDLINE | ID: mdl-25162638

ABSTRACT

Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4Δ/pex22Δ and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.


Subject(s)
Gene Expression Regulation, Fungal , Membrane Proteins/genetics , Peroxisomes/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Ubiquitin/genetics , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Deletion , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Peroxins , Peroxisome-Targeting Signal 1 Receptor , Phosphorylation , Protein Structure, Tertiary , Protein Transport , Receptors, Cytoplasmic and Nuclear/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Ubiquitin/metabolism , Ubiquitination
10.
Mol Cell Proteomics ; 13(2): 475-88, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24284412

ABSTRACT

FE65 is a cytosolic adapter protein and an important binding partner of amyloid precursor protein. Dependent on Thr668 phosphorylation in amyloid precursor protein, which influences amyloidogenic amyloid precursor protein processing, FE65 undergoes nuclear translocation, thereby transmitting a signal from the cell membrane to the nucleus. As this translocation may be relevant in Alzheimer disease, and as FE65 consists of three protein-protein interaction domains able to bind and affect a variety of other proteins and downstream signaling pathways, the identification of the FE65 interactome is of central interest in Alzheimer disease research. In this study, we identified 121 proteins as new potential FE65 interacting proteins in a pulldown/mass spectrometry approach using human post-mortem brain samples as protein pools for recombinantly expressed FE65. Co-immunoprecipitation assays further validated the interaction of FE65 with the candidates SV2A and SERCA2. In parallel, we investigated the whole cell proteome of primary hippocampal neurons from FE65/FE65L1 double knockout mice. Notably, the validated FE65 binding proteins were also found to be differentially abundant in neurons derived from the FE65 knockout mice relative to wild-type control neurons. SERCA2 is an important player in cellular calcium homeostasis, which was found to be up-regulated in double knockout neurons. Indeed, knock-down of FE65 in HEK293T cells also evoked an elevated sensitivity to thapsigargin, a stressor specifically targeting the activity of SERCA2. Thus, our results suggest that FE65 is involved in the regulation of intracellular calcium homeostasis. Whereas transfection of FE65 alone caused a typical dot-like phenotype in the nucleus, co-transfection of SV2A significantly reduced the percentage of FE65 dot-positive cells, pointing to a possible role for SV2A in the modulation of FE65 intracellular targeting. Given that SV2A has a signaling function at the presynapse, its effect on FE65 intracellular localization suggests that the SV2A/FE65 interaction might play a role in synaptic signal transduction.


Subject(s)
Brain/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Protein Interaction Maps , Animals , Brain/pathology , Cells, Cultured , Embryo, Mammalian , HEK293 Cells , Humans , Immunoprecipitation , Membrane Glycoproteins/genetics , Membrane Glycoproteins/isolation & purification , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/isolation & purification , Neurons/metabolism , Neurons/pathology , Nuclear Proteins/genetics , Protein Binding , Protein Interaction Maps/genetics , Synapses/genetics , Synapses/metabolism
11.
Traffic ; 14(12): 1290-301, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24034674

ABSTRACT

Peroxisomal matrix protein import is facilitated by cycling receptors that recognize their cargo proteins in the cytosol by a peroxisomal targeting sequence (PTS) and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the peroxisomal lumen, whereas the receptor is released to the cytosol for further rounds of protein import. This cycle is controlled by the ubiquitination status of the receptor, which is best understood for the PTS1-receptor. While polyubiquitination of PTS-receptors results in their proteasomal degradation, the monoubiquitinated PTS-receptors are exported to the cytosol and recycled for further rounds of protein import. Here, we describe the identification of two ubiquitination cascades acting on the PTS2 co-receptor Pex18p. Using in vivo and in vitro approaches, we demonstrate that the polyubiquitination of Pex18p requires the ubiquitin-conjugating enzyme (E2) Ubc4p, which cooperates with the RING (really interesting new gene)-type ubiquitin-protein ligases (E3) Pex2p as well as Pex10p. Monoubiquitination of Pex18p depends on the E2 enzyme Pex4p (Ubc10p), which functions in concert with the E3 enzymes Pex12p and Pex10p. Our findings for the PTS2-pathway complement the data on PTS1-receptor ubiquitination and add up to a unified concept of the ubiquitin-based regulation of peroxisomal import.


Subject(s)
Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitination , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peroxins , Peroxisomal Targeting Signal 2 Receptor , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
12.
Mol Cell Proteomics ; 11(11): 1274-88, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22879628

ABSTRACT

Central hallmark of Alzheimer's disease are senile plaques mainly composed of ß-amyloid, which is a cleavage product of the amyloid precursor protein (APP). The physiological function of APP and its family members APLP1 and APLP2 is poorly understood. In order to fill this gap, we established a cell-culture based model with simultaneous knockdown of all members of the family. A comprehensive proteome study of the APP/APLP1/APLP2 knockdown cell lysates versus controls revealed significant protein abundance changes of more than 30 proteins. Targeted validation of selected candidates by immunoblotting supported the significant down-regulation of the methionine adenosyltransferase II, alpha (MAT2A) as well as of peroxiredoxin 4 in the knockdown cells. Moreover, MAT2A was significantly down-regulated at the mRNA level as well. MAT2A catalyzes the production of S-adenosylmethionine from methionine and ATP, which plays a pivotal role in the methylation of neurotransmitters, DNA, proteins, and lipids. MAT2A-dependent significant up-regulation of S-adenosylmethionine was also detectable in the knockdown cells compared with controls. Our results point to a role of the APP family proteins in cellular methylation mechanisms and fit to findings of disturbed S-adenosylmethionine levels in tissue and CSF of Alzheimer disease patients versus controls. Importantly, methylation plays a central role for neurotransmitter generation like acetylcholine pointing to a crucial relevance of our findings for Alzheimer's disease. In addition, we identified differential gene expression of BACE1 and PSEN1 in the knockdown cells, which is possibly a consequence of MAT2A deregulation and may indicate a self regulatory mechanism.


Subject(s)
Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/genetics , Gene Expression Regulation , Methionine Adenosyltransferase/metabolism , Presenilin-1/genetics , S-Adenosylmethionine/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Down-Regulation , Gene Knockdown Techniques , HEK293 Cells , Humans , Models, Biological , Nerve Tissue Proteins/metabolism , Peroxiredoxins , Presenilin-1/metabolism , Proteome/metabolism , Reproducibility of Results , Staining and Labeling
13.
FEBS J ; 279(11): 2060-70, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22471590

ABSTRACT

The RING finger peroxins Pex2p, Pex10p and Pex12p are central components of the peroxisomal matrix protein import machinery. The RING domain enables each of these proteins to exhibit ubiquitin-protein ligase activity, which has been linked to ubiquitin-dependent regulation of the peroxisomal import receptor Pex5p. The RING peroxins are considered to form a heteromeric complex in vivo, although the elucidation of the structural assembly, as well as the functional interplay of the RING domains, has remained elusive. Using in vitro approaches, we show that the RING domains form a heteromeric complex with Pex10p(RING) as a central component that directly binds the Pex2p(RING) and Pex12p(RING). The RING domains proved to function as heteromeric pairs that display an Pex10p-dependent enhanced ligase activity in an ubiquitin conjugating enzyme-selective manner.


Subject(s)
RING Finger Domains/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitination/genetics , Amino Acid Sequence , Binding Sites , Escherichia coli , Molecular Sequence Data , Peroxisomes/genetics , Peroxisomes/metabolism , Protein Binding , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
14.
J Biol Chem ; 286(50): 43495-505, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22021076

ABSTRACT

The peroxisomal matrix protein import is facilitated by cycling receptor molecules that shuttle between the cytosol and the peroxisomal membrane. In the yeast Saccharomyces cerevisiae, the import of proteins harboring a peroxisomal targeting signal of type II (PTS2) is mediated by the receptor Pex7p and its co-receptor Pex18p. Here we demonstrate that Pex18p undergoes two kinds of ubiquitin modifications. One of these ubiquitination events depends on lysines 13 and 20 and forces rapid Pex18p turnover by proteasomal degradation. A cysteine residue near the extreme Pex18p amino-terminus is required for the second type of ubiquitination. It turned out that this cysteine residue at position 6 is essential for the function of Pex18p in peroxisomal protein import but does not contribute to receptor-cargo association and binding to the peroxisomal import apparatus. However, in contrast to the wild-type protein, cysteine 6-mutated Pex18p is arrested in a membrane-protected state, whereas Pex7p is accessible in a protease protection assay. This finding indicates that Pex18p export is linked to cargo translocation, which supports the idea of an export-driven import of proteins into peroxisomes.


Subject(s)
Cysteine/metabolism , Intracellular Membranes/metabolism , Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination/physiology , Immunoblotting , Lysine/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Peroxisomal Targeting Signal 2 Receptor , Peroxisome-Targeting Signal 1 Receptor , Protein Transport/genetics , Protein Transport/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination/genetics
15.
Mol Cell Biol ; 29(20): 5505-16, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19687296

ABSTRACT

The PTS1-dependent peroxisomal matrix protein import is facilitated by the receptor protein Pex5 and can be divided into cargo recognition in the cytosol, membrane docking of the cargo-receptor complex, cargo release, and recycling of the receptor. The final step is controlled by the ubiquitination status of Pex5. While polyubiquitinated Pex5 is degraded by the proteasome, monoubiquitinated Pex5 is destined for a new round of the receptor cycle. Recently, the ubiquitin-conjugating enzymes involved in Pex5 ubiquitination were identified as Ubc4 and Pex4 (Ubc10), whereas the identity of the corresponding protein-ubiquitin ligases remained unknown. Here we report on the identification of the protein-ubiquitin ligases that are responsible for the ubiquitination of the peroxisomal protein import receptor Pex5. It is demonstrated that each of the three RING peroxins Pex2, Pex10, and Pex12 exhibits ubiquitin-protein isopeptide ligase activity. Our results show that Pex2 mediates the Ubc4-dependent polyubiquitination whereas Pex12 facilitates the Pex4-dependent monoubiquitination of Pex5.


Subject(s)
Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Peroxisomes/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin-Protein Ligases/metabolism , Peroxins , Peroxisome-Targeting Signal 1 Receptor , Protein Transport/physiology , Repressor Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination/physiology
16.
Biochem Soc Trans ; 36(Pt 1): 99-104, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18208394

ABSTRACT

The discovery of the peroxisomal ATPase Pex1p triggered the beginning of the research on AAA (ATPase associated with various cellular activities) proteins and the genetic dissection of peroxisome biogenesis. Peroxisomes are virtually ubiquitous organelles, which are connected to diverse cellular functions. The highly diverse and adaptive character of peroxisomes is accomplished by modulation of their enzyme content, which is mediated by dynamically operating protein-import machineries. The import of matrix proteins into the peroxisomal lumen has been described as the ATP-consuming step, but the corresponding reaction, as well as the ATPase responsible, had been obscure for nearly 15 years. Recent work using yeast and human fibroblast cells has identified the peroxisomal AAA proteins Pex1p and Pex6p as mechano-enzymes and core components of a complex which dislocates the cycling import receptor Pex5p from the peroxisomal membrane back to the cytosol. This AAA-mediated process is regulated by the ubiquitination status of the receptor. Pex4p [Ubc10p (ubiquitin-conjugating enzyme 10)]-catalysed mono-ubiquitination of Pex5p primes the receptor for recycling, thereby enabling further rounds of matrix protein import, whereas Ubc4p-catalysed polyubiquitination targets Pex5p to proteasomal degradation.


Subject(s)
Metalloendopeptidases/metabolism , Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitination , Humans , Protein Transport
17.
J Cell Biol ; 177(2): 197-204, 2007 Apr 23.
Article in English | MEDLINE | ID: mdl-17452527

ABSTRACT

Pex5p, which is the import receptor for peroxisomal matrix proteins harboring a type I signal sequence (PTS1), is mono- and polyubiquitinated in Saccharomyces cerevisiae. We identified Pex5p as a molecular target for Pex4p-dependent monoubiquitination and demonstrated that either poly- or monoubiquitination of the receptor is required for the ATP-dependent release of the protein from the peroxisomal membrane to the cytosol as part of the receptor cycle. Therefore, the energy requirement of the peroxisomal import pathway has to be extended by a second ATP-dependent step, namely receptor monoubiquitination.


Subject(s)
Membrane Transport Proteins/metabolism , Peroxisomes/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism , Cytosol/metabolism , Intracellular Membranes/metabolism , Models, Biological , Peroxins , Peroxisome-Targeting Signal 1 Receptor , Polyubiquitin/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/metabolism , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...